Academic literature on the topic 'Explainability of machine learning models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Explainability of machine learning models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Explainability of machine learning models"
S, Akshay, and Manu Madhavan. "COMPARISON OF EXPLAINABILITY OF MACHINE LEARNING BASED MALAYALAM TEXT CLASSIFICATION." ICTACT Journal on Soft Computing 15, no. 1 (2024): 3386–91. http://dx.doi.org/10.21917/ijsc.2024.0476.
Full textPark, Min Sue, Hwijae Son, Chongseok Hyun, and Hyung Ju Hwang. "Explainability of Machine Learning Models for Bankruptcy Prediction." IEEE Access 9 (2021): 124887–99. http://dx.doi.org/10.1109/access.2021.3110270.
Full textCheng, Xueyi, and Chang Che. "Interpretable Machine Learning: Explainability in Algorithm Design." Journal of Industrial Engineering and Applied Science 2, no. 6 (2024): 65–70. https://doi.org/10.70393/6a69656173.323337.
Full textBozorgpanah, Aso, Vicenç Torra, and Laya Aliahmadipour. "Privacy and Explainability: The Effects of Data Protection on Shapley Values." Technologies 10, no. 6 (2022): 125. http://dx.doi.org/10.3390/technologies10060125.
Full textZhang, Xueting. "Traffic Flow Prediction Based on Explainable Machine Learning." Highlights in Science, Engineering and Technology 56 (July 14, 2023): 56–64. http://dx.doi.org/10.54097/hset.v56i.9816.
Full textPendyala, Vishnu, and Hyungkyun Kim. "Assessing the Reliability of Machine Learning Models Applied to the Mental Health Domain Using Explainable AI." Electronics 13, no. 6 (2024): 1025. http://dx.doi.org/10.3390/electronics13061025.
Full textKim, Dong-sup, and Seungwoo Shin. "THE ECONOMIC EXPLAINABILITY OF MACHINE LEARNING AND STANDARD ECONOMETRIC MODELS-AN APPLICATION TO THE U.S. MORTGAGE DEFAULT RISK." International Journal of Strategic Property Management 25, no. 5 (2021): 396–412. http://dx.doi.org/10.3846/ijspm.2021.15129.
Full textTOPCU, Deniz. "How to explain a machine learning model: HbA1c classification example." Journal of Medicine and Palliative Care 4, no. 2 (2023): 117–25. http://dx.doi.org/10.47582/jompac.1259507.
Full textRodríguez Mallma, Mirko Jerber, Luis Zuloaga-Rotta, Rubén Borja-Rosales, et al. "Explainable Machine Learning Models for Brain Diseases: Insights from a Systematic Review." Neurology International 16, no. 6 (2024): 1285–307. http://dx.doi.org/10.3390/neurolint16060098.
Full textBhagyashree D Shendkar. "Explainable Machine Learning Models for Real-Time Threat Detection in Cybersecurity." Panamerican Mathematical Journal 35, no. 1s (2024): 264–75. http://dx.doi.org/10.52783/pmj.v35.i1s.2313.
Full textDissertations / Theses on the topic "Explainability of machine learning models"
Delaunay, Julien. "Explainability for machine learning models : from data adaptability to user perception." Electronic Thesis or Diss., Université de Rennes (2023-....), 2023. http://www.theses.fr/2023URENS076.
Full textStanzione, Vincenzo Maria. "Developing a new approach for machine learning explainability combining local and global model-agnostic approaches." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25480/.
Full textAyad, Célia. "Towards Reliable Post Hoc Explanations for Machine Learning on Tabular Data and their Applications." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX082.
Full textRadulovic, Nedeljko. "Post-hoc Explainable AI for Black Box Models on Tabular Data." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAT028.
Full textWillot, Hénoïk. "Certified explanations of robust models." Electronic Thesis or Diss., Compiègne, 2024. http://www.theses.fr/2024COMP2812.
Full textKurasinski, Lukas. "Machine Learning explainability in text classification for Fake News detection." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20058.
Full textLounici, Sofiane. "Watermarking machine learning models." Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS282.pdf.
Full textMaltbie, Nicholas. "Integrating Explainability in Deep Learning Application Development: A Categorization and Case Study." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1623169431719474.
Full textHardoon, David Roi. "Semantic models for machine learning." Thesis, University of Southampton, 2006. https://eprints.soton.ac.uk/262019/.
Full textBODINI, MATTEO. "DESIGN AND EXPLAINABILITY OF MACHINE LEARNING ALGORITHMS FOR THE CLASSIFICATION OF CARDIAC ABNORMALITIES FROM ELECTROCARDIOGRAM SIGNALS." Doctoral thesis, Università degli Studi di Milano, 2022. http://hdl.handle.net/2434/888002.
Full textBooks on the topic "Explainability of machine learning models"
Nandi, Anirban, and Aditya Kumar Pal. Interpreting Machine Learning Models. Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-7802-4.
Full textGalindez Olascoaga, Laura Isabel, Wannes Meert, and Marian Verhelst. Hardware-Aware Probabilistic Machine Learning Models. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74042-9.
Full textSingh, Pramod. Deploy Machine Learning Models to Production. Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6546-8.
Full textZhang, Zhihua. Statistical Machine Learning: Foundations, Methodologies and Models. John Wiley & Sons, Limited, 2017.
Find full textRendell, Larry. Representations and models for concept learning. Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1987.
Find full textEhteram, Mohammad, Zohreh Sheikh Khozani, Saeed Soltani-Mohammadi, and Maliheh Abbaszadeh. Estimating Ore Grade Using Evolutionary Machine Learning Models. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8106-7.
Full textBisong, Ekaba. Building Machine Learning and Deep Learning Models on Google Cloud Platform. Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4470-8.
Full textGupta, Punit, Mayank Kumar Goyal, Sudeshna Chakraborty, and Ahmed A. Elngar. Machine Learning and Optimization Models for Optimization in Cloud. Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003185376.
Full textSuthaharan, Shan. Machine Learning Models and Algorithms for Big Data Classification. Springer US, 2016. http://dx.doi.org/10.1007/978-1-4899-7641-3.
Full textBook chapters on the topic "Explainability of machine learning models"
Nandi, Anirban, and Aditya Kumar Pal. "The Eight Pitfalls of Explainability Methods." In Interpreting Machine Learning Models. Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-7802-4_15.
Full textNandi, Anirban, and Aditya Kumar Pal. "Explainability Facts: A Framework for Systematic Assessment of Explainable Approaches." In Interpreting Machine Learning Models. Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-7802-4_6.
Full textKamath, Uday, and John Liu. "Pre-model Interpretability and Explainability." In Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83356-5_2.
Full textDessain, Jean, Nora Bentaleb, and Fabien Vinas. "Cost of Explainability in AI: An Example with Credit Scoring Models." In Communications in Computer and Information Science. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44064-9_26.
Full textHenriques, J., T. Rocha, P. de Carvalho, C. Silva, and S. Paredes. "Interpretability and Explainability of Machine Learning Models: Achievements and Challenges." In IFMBE Proceedings. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-59216-4_9.
Full textBargal, Sarah Adel, Andrea Zunino, Vitali Petsiuk, et al. "Beyond the Visual Analysis of Deep Model Saliency." In xxAI - Beyond Explainable AI. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04083-2_13.
Full textStevens, Alexander, Johannes De Smedt, and Jari Peeperkorn. "Quantifying Explainability in Outcome-Oriented Predictive Process Monitoring." In Lecture Notes in Business Information Processing. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98581-3_15.
Full textBaniecki, Hubert, Wojciech Kretowicz, and Przemyslaw Biecek. "Fooling Partial Dependence via Data Poisoning." In Machine Learning and Knowledge Discovery in Databases. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26409-2_8.
Full textColosimo, Bianca Maria, and Fabio Centofanti. "Model Interpretability, Explainability and Trust for Manufacturing 4.0." In Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12402-0_2.
Full textSantos, Geanderson, Amanda Santana, Gustavo Vale, and Eduardo Figueiredo. "Yet Another Model! A Study on Model’s Similarities for Defect and Code Smells." In Fundamental Approaches to Software Engineering. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30826-0_16.
Full textConference papers on the topic "Explainability of machine learning models"
Bouzid, Mohamed, and Manar Amayri. "Addressing Explainability in Load Forecasting Using Time Series Machine Learning Models." In 2024 IEEE 12th International Conference on Smart Energy Grid Engineering (SEGE). IEEE, 2024. http://dx.doi.org/10.1109/sege62220.2024.10739606.
Full textBurgos, David, Ahsan Morshed, MD Mamunur Rashid, and Satria Mandala. "A Comparison of Machine Learning Models to Deep Learning Models for Cancer Image Classification and Explainability of Classification." In 2024 International Conference on Data Science and Its Applications (ICoDSA). IEEE, 2024. http://dx.doi.org/10.1109/icodsa62899.2024.10651790.
Full textSheikhani, Arman, Ervin Agic, Mahshid Helali Moghadam, Juan Carlos Andresen, and Anders Vesterberg. "Lithium-Ion Battery SOH Forecasting: From Deep Learning Augmented by Explainability to Lightweight Machine Learning Models." In 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 2024. http://dx.doi.org/10.1109/etfa61755.2024.10710794.
Full textMechouche, Ammar, Valerio Camerini, Caroline Del, Elsa Cansell, and Konstanca Nikolajevic. "From Dampers Estimated Loads to In-Service Degradation Correlations." In Vertical Flight Society 80th Annual Forum & Technology Display. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0080-2024-1108.
Full textIzza, Yacine, Xuanxiang Huang, Antonio Morgado, Jordi Planes, Alexey Ignatiev, and Joao Marques-Silva. "Distance-Restricted Explanations: Theoretical Underpinnings & Efficient Implementation." In 21st International Conference on Principles of Knowledge Representation and Reasoning {KR-2023}. International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/kr.2024/45.
Full textAlami, Amine, Jaouad Boumhidi, and Loqman Chakir. "Explainability in CNN based Deep Learning models for medical image classification." In 2024 International Conference on Intelligent Systems and Computer Vision (ISCV). IEEE, 2024. http://dx.doi.org/10.1109/iscv60512.2024.10620149.
Full textRodríguez-Barroso, Nuria, Javier Del Ser, M. Victoria Luzón, and Francisco Herrera. "Defense Strategy against Byzantine Attacks in Federated Machine Learning: Developments towards Explainability." In 2024 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2024. http://dx.doi.org/10.1109/fuzz-ieee60900.2024.10611769.
Full textPerikos, Isidoros. "Sensitive Content Detection in Social Networks Using Deep Learning Models and Explainability Techniques." In 2024 IEEE/ACIS 9th International Conference on Big Data, Cloud Computing, and Data Science (BCD). IEEE, 2024. http://dx.doi.org/10.1109/bcd61269.2024.10743081.
Full textGafur, Jamil, Steve Goddard, and William Lai. "Adversarial Robustness and Explainability of Machine Learning Models." In PEARC '24: Practice and Experience in Advanced Research Computing. ACM, 2024. http://dx.doi.org/10.1145/3626203.3670522.
Full textIslam, Md Ariful, Kowshik Nittala, and Garima Bajwa. "Adding Explainability to Machine Learning Models to Detect Chronic Kidney Disease." In 2022 IEEE 23rd International Conference on Information Reuse and Integration for Data Science (IRI). IEEE, 2022. http://dx.doi.org/10.1109/iri54793.2022.00069.
Full textReports on the topic "Explainability of machine learning models"
Smith, Michael, Erin Acquesta, Arlo Ames, et al. SAGE Intrusion Detection System: Sensitivity Analysis Guided Explainability for Machine Learning. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1820253.
Full textSkryzalin, Jacek, Kenneth Goss, and Benjamin Jackson. Securing machine learning models. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1661020.
Full textMartinez, Carianne, Jessica Jones, Drew Levin, Nathaniel Trask, and Patrick Finley. Physics-Informed Machine Learning for Epidemiological Models. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1706217.
Full textLavender, Samantha, and Trent Tinker, eds. Testbed-19: Machine Learning Models Engineering Report. Open Geospatial Consortium, Inc., 2024. http://dx.doi.org/10.62973/23-033.
Full textSaenz, Juan Antonio, Ismael Djibrilla Boureima, Vitaliy Gyrya, and Susan Kurien. Machine-Learning for Rapid Optimization of Turbulence Models. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1638623.
Full textKulkarni, Sanjeev R. Extending and Unifying Formal Models for Machine Learning. Defense Technical Information Center, 1997. http://dx.doi.org/10.21236/ada328730.
Full textBanerjee, Boudhayan. Machine Learning Models for Political Video Advertisement Classification. Iowa State University, 2017. http://dx.doi.org/10.31274/cc-20240624-976.
Full textValaitis, Vytautas, and Alessandro T. Villa. A Machine Learning Projection Method for Macro-Finance Models. Federal Reserve Bank of Chicago, 2022. http://dx.doi.org/10.21033/wp-2022-19.
Full textFessel, Kimberly. Machine Learning in Python. Instats Inc., 2024. http://dx.doi.org/10.61700/s74zy0ivgwioe1764.
Full textOgunbire, Abimbola, Panick Kalambay, Hardik Gajera, and Srinivas Pulugurtha. Deep Learning, Machine Learning, or Statistical Models for Weather-related Crash Severity Prediction. Mineta Transportation Institute, 2023. http://dx.doi.org/10.31979/mti.2023.2320.
Full text