Academic literature on the topic 'Exponential sums'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Exponential sums.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Exponential sums"
Shparlinski, Igor E., and José Felipe Voloch. "Binomial exponential sums." ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA - CLASSE DI SCIENZE 21, no. 2 (December 2020): 931–41. http://dx.doi.org/10.2422/2036-2145.201811_007.
Full textKrätzel, Ekkehard. "DOUBLE EXPONENTIAL SUMS." Analysis 16, no. 2 (June 1996): 109–24. http://dx.doi.org/10.1524/anly.1996.16.2.109.
Full textKerr, B. "INCOMPLETE EXPONENTIAL SUMS OVER EXPONENTIAL FUNCTIONS." Quarterly Journal of Mathematics 66, no. 1 (June 16, 2014): 213–24. http://dx.doi.org/10.1093/qmath/hau015.
Full textShparlinski, Igor E., and Kam Hung Yau. "Double exponential sums with exponential functions." International Journal of Number Theory 13, no. 10 (October 16, 2017): 2531–43. http://dx.doi.org/10.1142/s179304211750141x.
Full textProskurin, N. V. "On Cubic Exponential Sums and Gauss Sums." Journal of Mathematical Sciences 234, no. 5 (September 10, 2018): 697–700. http://dx.doi.org/10.1007/s10958-018-4037-0.
Full textCochrane, Todd, Christopher Pinner, and Jason Rosenhouse. "Sparse polynomial exponential sums." Acta Arithmetica 108, no. 1 (2003): 37–52. http://dx.doi.org/10.4064/aa108-1-4.
Full textŠtefaňák, M., D. Haase, W. Merkel, M. S. Zubairy, and W. P. Schleich. "Factorization with exponential sums." Journal of Physics A: Mathematical and Theoretical 41, no. 30 (July 15, 2008): 304024. http://dx.doi.org/10.1088/1751-8113/41/30/304024.
Full textErdélyi, T. "Inequalities for exponential sums." Sbornik: Mathematics 208, no. 3 (March 31, 2017): 433–64. http://dx.doi.org/10.1070/sm8670.
Full textFouvry, Etienne, and Henryk Iwaniec. "Exponential sums with monomials." Journal of Number Theory 33, no. 3 (November 1989): 311–33. http://dx.doi.org/10.1016/0022-314x(89)90067-x.
Full textAdolphson, Alan, and Steven Sperber. "On twisted exponential sums." Mathematische Annalen 290, no. 1 (March 1991): 713–26. http://dx.doi.org/10.1007/bf01459269.
Full textDissertations / Theses on the topic "Exponential sums"
Louvel, Benoît. "Twisted Kloosterman sums and cubic exponential sums." Doctoral thesis, Montpellier 2, 2008. http://hdl.handle.net/11858/00-1735-0000-0006-B3CB-A.
Full textChambille, Saskia. "Exponential sums, cell decomposition and p-adic integration." Thesis, Lille 1, 2018. http://www.theses.fr/2018LIL1I023/document.
Full textIn this thesis we study p-adic exponential sums and integrals using ideas from model theory and geometry. The first part of this thesis deals with exponential sums in P-minimal fields. The second part discusses estimates for the asymptotic behaviour of exponential sums over p-adic fields. Our work on P-minimal fields starts with the proof of a cell decomposition theorem that holds in all P-minimal fields, i.e., independently of the existence of definable Skolem functions. For P-minimal fields that lack these functions, we introduce the notion of regular clustered cells. This notion is close to the classical notion of p-adic cells, that was introduced by Denef. Our cell decomposition uses both classical cells and regular clustered cells. Next, we extend the notion of exponential-constructible functions, already defined in the semi-algebraic and subanalytic setting, to all P-minimal fields. We do this by enlarging the algebras of constructible functions with exponential sums. Using our cell decomposition theorem we prove that exponential-constructible functions are stable under integration. This means that the act of integrating an exponential-constructible function over some of its variables produces an exponential-constructible function in the other variables. In our work on estimates for the asymptotic behaviour of exponential sums we prove the Igusa, Denef-Sperber and Cluckers-Veys conjectures for polynomials with log-canonical threshold at most one half. We give two different proofs, one using motivic integration, and the other one using the Igusa zeta functions
Watt, N. "some problems in analytic number theory." Thesis, Bucks New University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384667.
Full textAlsulmi, Badria. "Generalized Jacobi sums modulo prime powers." Diss., Kansas State University, 2016. http://hdl.handle.net/2097/32668.
Full textAllison, Gisele. "Some problems related to incomplete character sums." Thesis, University of Nottingham, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285601.
Full textChênevert, Gabriel. "Exponential sums, hypersurfaces with many symmetries and Galois representations." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=32386.
Full textLe thème principal de cette thèse est l'étude des systèmes compatibles de représentations galoisiennes $\ell$-adiques provenant de la cohomologie étale de variétés arithmétiques admettant beaucoup de symétries. Une décomposition canonique de ces systèmes en composantes isotypiques est obtenue (section 3.1). Les composantes isotypiques sont décrites comme la cohomologie du quotient à valeurs dans un certain faisceau, fournissant ainsi une interprétation géométrique de la rationalité des fonctions $L$ correspondantes. Une famille spécifique d'hypersurfaces $W_\ell^{m,n}$ de degré $\ell$ et dimension $m+n-3$, admettant une action du produit de groupes symétriques $S_m \times S_n$, apparaît naturellement en lien avec les moments moyens de certaines sommes exponentielles (chapitre 4); le comportement limite de ces moments est obtenu en considérant la trace du morphisme de Frobenius sur la cohomologie de la désingularisation des variétés correspondantes, suivant l'approche développée par Livné. Deux autres classes apparentées d'hypersurfaces lisses admettant une action du groupe symétrique sont introduites au chapitre 3, et le caractère de la représentation de $S_n$ sur leur cohomologie primitive est calculé. En particulier, dans le cas d'une certaine hypersurface cubique de dimension 4, un système compatible de représentations galoisiennes de dimension 2 est obtenu. Une variante de la méthode de Faltings-Serre est développée dans le chapitre 5 afin de déterminer explicitement la forme modulaire correspondante, dont l'existence est prédite par la conjecture de Serre. Nous proposons un traitement systématique de la méthode de Falting
Pigno, Vincent. "Prime power exponential and character sums with explicit evaluations." Diss., Kansas State University, 2014. http://hdl.handle.net/2097/18277.
Full textDepartment of Mathematics
Christopher Pinner
Exponential and character sums occur frequently in number theory. In most applications one is only interested in estimating such sums. Explicit evaluations of such sums are rare. In this thesis we succeed in evaluating three types of sums when p is a prime and m is sufficiently large. The twisted monomial sum, the binomial character sum, and the generalized Jacobi sum. We additionally show that these are all sums which can be expressed in terms of classical Gauss sums.
Qin, Huan. "Averages of fractional exponential sums weighted by Maass forms." Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/5607.
Full textWong, Chi-Yan, and 黃志仁. "Some results on the error terms in certain exponential sums involving the divisor function." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B42577147.
Full textWong, Chi-Yan. "Some results on the error terms in certain exponential sums involving the divisor function." Click to view the E-thesis via HKUTO, 2002. http://sunzi.lib.hku.hk/hkuto/record/B42577147.
Full textBooks on the topic "Exponential sums"
Korobov, N. M. Exponential sums and their applications. Dordrecht: Kluwer Academic Publishers, 1992.
Find full textGraham, S. W. Van der Corputʼs method of exponential sums. Cambridge: Cambridge University Press, 1991.
Find full textKoni͡agin, S. V. Character sums with exponential functions and their applications. Cambridge: Cambridge University Press, 1999.
Find full textExponential sums and differential equations. Princeton, N.J: Princeton University Press, 1990.
Find full textKorobov, N. M. Exponential Sums and their Applications. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8032-8.
Full textHuxley, M. N. Area, lattice points, and exponential sums. Oxford: Clarendon Press, 1996.
Find full textGraham, Sidney W. Van der Corput's method of exponential sums. Cambridge: Cambridge University Press, 1991.
Find full textGraham, Sidney W. Van der Corput's method of exponential sums. Cambridge [England]: Cambridge University Press, 1991.
Find full textBachman, Gennady. On the coefficients of cyclotomic polynomials. Providence, R.I: American Mathematical Society, 1993.
Find full textShestopaloff, Yuri K. Sums of exponential functions and their new fundamental properties, with applications to natural phenomena. Toronto: AKVY Press, 2008.
Find full textBook chapters on the topic "Exponential sums"
Bordellès, Olivier. "Exponential Sums." In Universitext, 411–515. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54946-6_6.
Full textBordellès, Olivier. "Exponential Sums." In Universitext, 297–353. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4096-2_6.
Full textShparlinski, Igor. "Exponential Sums." In Cryptographic Applications of Analytic Number Theory, 37–60. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8037-4_4.
Full textYuan, Wang. "Complete Exponential Sums." In Diophantine Equations and Inequalities in Algebraic Number Fields, 14–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-58171-7_2.
Full textKorobov, N. M. "Complete Exponential Sums." In Exponential Sums and their Applications, 1–67. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8032-8_1.
Full textKorobov, N. M. "Weyl’s Sums." In Exponential Sums and their Applications, 68–138. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8032-8_2.
Full textBraess, Dietrich. "Approximation by Exponential Sums." In Nonlinear Approximation Theory, 168–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-61609-9_6.
Full textDaboussi, H. "On some Exponential Sums." In Analytic Number Theory, 111–18. Boston, MA: Birkhäuser Boston, 1990. http://dx.doi.org/10.1007/978-1-4612-3464-7_9.
Full textRamaré, Olivier. "Three Arithmetical Exponential Sums." In Excursions in Multiplicative Number Theory, 259–74. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-73169-4_26.
Full textCai, Jin-Yi, Xi Chen, Richard Lipton, and Pinyan Lu. "On Tractable Exponential Sums." In Frontiers in Algorithmics, 148–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14553-7_16.
Full textConference papers on the topic "Exponential sums"
Okada, Tatsuya, Zenji Kobayashi, Takeshi Sekiguchi, Yasunobu Shiota, and Takao Komatsu. "On exponential sums of digital sums related to Gelfond's theorem." In DIOPHANTINE ANALYSIS AND RELATED FIELDS: DARF 2007/2008. AIP, 2008. http://dx.doi.org/10.1063/1.2841904.
Full textDiederichs, Benedikt, and Armin Iske. "Parameter estimation for bivariate exponential sums." In 2015 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2015. http://dx.doi.org/10.1109/sampta.2015.7148940.
Full textSHPARLINSKI, IGOR E. "OPEN PROBLEMS ON EXPONENTIAL AND CHARACTER SUMS." In Proceedings of the 5th China-Japan Seminar. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814289924_0010.
Full textSchmidt, Kai-Uwe. "ℤ4-valued quadratic forms and exponential sums." In 2008 IEEE International Symposium on Information Theory - ISIT. IEEE, 2008. http://dx.doi.org/10.1109/isit.2008.4595495.
Full textŠtefaňák, M., W. Merkel, M. Mehring, and W. P. Schleich. "NMR implementation of exponential sums for integer factorization." In Proceedings of the International Symposium. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812818942_0006.
Full textMoore, Cristopher, and Leonard J. Schulman. "Tree codes and a conjecture on exponential sums." In ITCS'14: Innovations in Theoretical Computer Science. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2554797.2554813.
Full textBarvinok, Alexander I. "Computing the volume, counting integral points, and exponential sums." In the eighth annual symposium. New York, New York, USA: ACM Press, 1992. http://dx.doi.org/10.1145/142675.142713.
Full textHai Xin and Li Chao. "Value distributions of exponential sums from perfect nonlinear functions." In 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). IEEE, 2010. http://dx.doi.org/10.1109/iccasm.2010.5623154.
Full textHelleseth, Tor. "Cross-correlation of M-sequences, exponential sums and dickson polynomials." In 2009 Fourth International Workshop on Signal Design and its Applications in Communications (IWSDA). IEEE, 2009. http://dx.doi.org/10.1109/iwsda.2009.5346425.
Full textTonn, David, and Bourama Toni. "Expansion in Exponential Sums with Application to Discrete Complex Image Theory." In 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/USNC-URSI). IEEE, 2022. http://dx.doi.org/10.1109/ap-s/usnc-ursi47032.2022.9886135.
Full text