Contents
Academic literature on the topic 'Exposants (Algèbre)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Exposants (Algèbre).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Exposants (Algèbre)"
MELANÇON, GUY, and CHRISTOPHE REUTENAUER. "COMPUTING HALL EXPONENTS IN THE FREE GROUP." International Journal of Algebra and Computation 03, no. 03 (September 1993): 275–94. http://dx.doi.org/10.1142/s0218196793000196.
Full textDissertations / Theses on the topic "Exposants (Algèbre)"
Sawaya, Jamil. "Divisions selon les puissances fractionnaires d'un idéal." Nice, 2001. http://www.theses.fr/2001NICE5629.
Full textSouaifi, Sofiane. "Fonctions D(G/H)-finies sur un espace symetrique réductif." Aix-Marseille 2, 2001. http://www.theses.fr/2001AIX22055.
Full textJing, Ruihua. "Phénomène de concentration pour des équations avec nonlinéarités surcritiques." Paris 12, 2005. https://athena.u-pec.fr/primo-explore/search?query=any,exact,990003940560204611&vid=upec.
Full textCloutier, Maurice-Étienne. "Les parties puissante et libre de carrés d'un entier." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/29579/29579.pdf.
Full textDubois, Loïc. "Contractions de cônes complexes et exposants caractéristiques." Cergy-Pontoise, 2009. http://www.theses.fr/2009CERG0418.
Full textIn this thesis, we first study the regularity of a characteristic exponent with respect to a perturbation. More precisely, we generalize a result by Ruelle and we prove that the characteristic exponent depends real-analytically on the perturbation, without any topological assumptions. We then develop the theory of complex cones. We introduce a complex generalization of Hilbert projective metric. We prove that this generalization satisfies a contraction principle similar to Birkhoff 's theorem. We then get complex generalizations of Perron-Frobenius theorem. Finally, we use the spectral gaps estimates given by complex cones to give an explicit constant in the Berry-Esséen theorem for expanding maps on the interval
Vaslet, Elise. "Répétitions dans les mots et seuils d'évitabilité." Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX22048/document.
Full textIn this thesis we study various problems on repetition avoidance in infinite words. Raised by Thue and motivated by his work on squarefree words, the topic developed during the 20th century, and has nowadays become a principal area of research in combinatorics on words. In 1972, Dejean proposed an important conjecture whose verification in steps was completed recently (2009). The conjecture concerns the repetition threshold for an alphabet, i.e., the infimum of the avoidable exponents for that alphabet. The notion of threshold as a borderline between avoidability and unavoidability for a given set of words is the guiding line of our work. First, we focus on a generalization of the repetition threshold. This concept allows us to include, in addition to the exponent, the length of the repetitions as a parameter in the description of the set of repetitions to avoid. We obtain various bounds in that respect. We then study existence problems for words in which simultaneously some repetitions are forbidden, and others are forced. For the ternary alphabet, we answer the question: what real numbers are the critical exponent of some infinite word over a given alphabet? Also, we introduce a notion of highly repetitive words and give a partial description of the pairs of exponents which parameterize the existence of words both highly repetitive and repetition-free. Finally, we use results and techniques stemming from those problems to solve a question on graph colouring: we introduce a repetition threshold adapted from the thresholds we know for words, and give its value for two classes of graphs, namely, trees and subdivision graphs
Brilman, Matthieu. "Evaluation de performances d'une classe de systèmes de ressources partagées." Grenoble 1, 1996. https://theses.hal.science/tel-00004981.
Full textDemichel, Yann. "Analyse fractale d'une famille de fonctions aléatoires : les fonctions de bosses." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2006. http://tel.archives-ouvertes.fr/tel-00250060.
Full textla dimension de Hausdorff du graphe de F . La seconde partie de notre thèse est consacrée à l'application des fonctions de bosses à la modélisation de profils rugueux. On met en évidence de nouvelles propriétés théoriques, notamment à l'aide des fonctions de structure. Celles-ci donnent
naissance à des diagrammes logarithmiques, les courbes de structure, qui permettent d'analyser un signal en tenant compte des contraintes expérimentales. Elles sont utilisées pour l'identification d'une fonction de bosses et l'estimation de ses paramètres. Nous proposons pour cela de nombreuses méthodes en construisant des estimateurs adaptés. Il est alors possible de modéliser un signal donné par une fonction de bosses. Les courbes de structure servent encore à l'élaboration de critères de conformité. Des exemples de données théoriques et expérimentales illustrent notre propos.
Provencher, Guillaume. "Exposants géométriques des modèles de boucles dilués et idempotents des TL-modules de la chaîne de spins XXZ." Thèse, 2012. http://hdl.handle.net/1866/9706.
Full textThis thesis is concerned with the study of critical phenomena for two-dimensional models on the lattice. Its results are contained in two articles: A first one, devoted to measuring geometric exponents, and a second one to the construction of idempotents for the XXZ spin chain projecting on indecomposable modules of the Temperley-Lieb algebra. Monte Carlo experiments, for a family of loop models in their dilute phase, are presented in the first article. Coined "dilute loop models (DLM)", this family is based upon an O(n) model introduced by Nienhuis (1990). It is defined by two coprime integers p,p' and an anisotropy parameter. In the continuum limit, DLM(p,p') is expected to yield a logarithmic conformal field theory of central charge c(\kappa)=13-6(\kappa+1/\kappa), where the ratio \kappa=p/p' is related to the loop gas fugacity \beta=-2\cos\pi/\kappa. Critical exponents pertaining to valuable geometrical objects, namely the hull, external perimeter and red bonds, were measured. The Metropolis-Hastings algorithm, as well as several methods improving its efficiency, are presented. Despite the extrapolation of curves presenting large slopes, values as close as three to four digits from the theoretical predictions were attained through rigorous statistical analysis. The second article describes the decomposition of the XXZ spin chain Hilbert space \otimes^nC^2 using idempotents. The model of interest (Pasquier & Saleur (1990)) is described by a parameter-dependent Hamiltonian H_{XXZ}(q), q\in C^\times, expressible as a sum of elements of the Temperley-Lieb algebra TL_n(q). The spectrum of H_{XXZ}(q) in the continuum limit is also believed to be related to conformal field theories whose central charge is set by q. Using the quantum Schur-Weyl duality, an expression for the primitive idempotents of End_{TL_n}\otimes^nC^2, involving U_qsl_2 elements, is obtained. These idempotents allow for the explicit construction of the indecomposable TL_n-modules of \otimes^nC^2, all of which are irreducible except when q is a root of unity. This case, and the case where q is generic, are treated separately. Since a wide variety of results and tools are required to tackle the problems stated above, this thesis contains many introductory chapters. Its layout is as follows. The first chapter introduces theoretical concepts common to both articles, in particular an overview of critical phenomena and conformal field theory. Before proceeding to the article entitled \emph{Geometric Exponents of Dilute Loop Models} constituting Chapter 3, the second chapter deals briefly with logarithmic conformal fields, Schramm-Loewner evolution and the Metropolis-Hastings algorithm. The fourth chapter defines some algebraic concepts used in the second article, "The idempotents of the TL_n-module \otimes^nC^2 in terms of elements of U_qsl_2" of Chapter 5. A summary of the main results, as well as paths to unexplored questions, are suggested in a final chapter.
Lacroix, Jean-Frédéric. "Comparaison de la réussite des élèves dans la réduction d'expressions algébriques et numériques contenant des puissances." Mémoire, 2006. http://www.archipel.uqam.ca/3249/1/M9632.pdf.
Full text