Academic literature on the topic 'Extended periodic Anderson model'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Extended periodic Anderson model.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Extended periodic Anderson model"

1

Saiga, Y., T. Sugibayashi, and D. S. Hirashima. "Valence instability in an extended periodic Anderson model." Physica B: Condensed Matter 403, no. 5-9 (April 2008): 808–9. http://dx.doi.org/10.1016/j.physb.2007.10.176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Koga, Akihisa, Norio Kawakami, Robert Peters, and Thomas Pruschke. "Phase transitions in the extended periodic Anderson model." Physica B: Condensed Matter 403, no. 5-9 (April 2008): 1378–80. http://dx.doi.org/10.1016/j.physb.2007.10.190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Koga, Akihisa, Norio Kawakami, Robert Peters, and Thomas Pruschke. "Magnetic Properties of the Extended Periodic Anderson Model." Journal of the Physical Society of Japan 77, no. 3 (March 15, 2008): 033704. http://dx.doi.org/10.1143/jpsj.77.033704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sugibayashi, T., Y. Saiga, and D. S. Hirashima. "Charge fluctuations in an extended periodic Anderson model." Journal of Magnetism and Magnetic Materials 310, no. 2 (March 2007): e42-e44. http://dx.doi.org/10.1016/j.jmmm.2006.10.087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sugibayashi, Takashi, and Dai S. Hirashima. "Valence Fluctuations in an Extended Periodic Anderson Model." Journal of the Physical Society of Japan 75, Suppl (January 2006): 244–46. http://dx.doi.org/10.1143/jpsjs.75s.244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, T. K., and F. C. Zhang. "Extended and localized states in the periodic Anderson model." Physical Review B 34, no. 11 (December 1, 1986): 8114–17. http://dx.doi.org/10.1103/physrevb.34.8114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shinzaki, Ryu, Joji Nasu, and Akihisa Koga. "DMFT Study for Valence Fluctuations in the Extended Periodic Anderson Model." Journal of Physics: Conference Series 683 (February 5, 2016): 012041. http://dx.doi.org/10.1088/1742-6596/683/1/012041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hagymási, I., J. Sólyom, and Ö. Legeza. "Momentum Distribution Functions in a One-Dimensional Extended Periodic Anderson Model." Advances in Condensed Matter Physics 2015 (2015): 1–5. http://dx.doi.org/10.1155/2015/614017.

Full text
Abstract:
We study the momentum distribution of the electrons in an extended periodic Anderson model, where the interaction,Ucf, between itinerant and localized electrons is taken into account. In the symmetric half-filled model, due to the increase of the interorbital interaction, thefelectrons become more and more delocalized, while the itinerancy of conduction electrons decreases. Above a certain value ofUcfthefelectrons become again localized together with the conduction electrons. In the less than half-filled case, we observe thatUcfcauses strong correlations between thefelectrons in the mixed valence regime.
APA, Harvard, Vancouver, ISO, and other styles
9

Sugibayashi, Takashi, Yasuhiro Saiga, and Dai S. Hirashima. "Valence Instability in an Extended Periodic Anderson Model with Degenerate Orbitals." Journal of the Physical Society of Japan 77, Suppl.A (January 3, 2008): 278–80. http://dx.doi.org/10.1143/jpsjs.77sa.278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kubo, Katsunori. "Mass enhancement in an extended periodic Anderson model with valence fluctuations." Journal of Physics: Conference Series 391 (December 14, 2012): 012159. http://dx.doi.org/10.1088/1742-6596/391/1/012159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Extended periodic Anderson model"

1

Phan, Van Nham. "Valence transition and superconductivity in the extended periodic Anderson model." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1242199965571-88317.

Full text
Abstract:
In this thesis, an extended periodic Anderson model with an additional local Coulomb repulsion U f c between localized f electrons and conduction electrons is investigated by use of the projector-based renormalization method (PRM). First, it is shown that the model in one dimension shows a valence transition, which becomes sharper, when the energy of the f level approaches the Fermi level. The transition becomes also enhanced, when the hybridization V between the localized and conduction electrons decreases, for the case that the total number of electrons is fixed. In the two-dimensional case, one finds a similar valence transition behavior. However, in the valence transition regime also a superconducting phase may occur. To investigate this phase, we start from an Hamiltonian which includes small gauge symmetry breaking fields. We derive renormalization equations, from which the superconducting pairing functions are self-consistently determined. Our analytical and numerical results show that d- wave superconductivity becomes dominant in the valence transition regime. This confirms the suggestion by Miyake that valence fluctuations may lead to superconductivity in the Ce based heavy-fermion systems under high pressure
In dieser Arbeit wird mit Hilfe der projektiven Renormierungsmethode (PRM) ein erweitertes periodische Anderson Modell untersucht, das zusätzlich eine Coulomb-Abstoßung zwischen den lokalisierten f-Elektronen und den Leitungselektronen enthält. In einer Dimension zeigt das Modell einen Valenzübergang, wenn sich die Energie des f-Niveaus der Fermienergie nähert. Der Übergang wird ebenfalls schärfer, wenn bei festgehaltener Gesamtelektronenzahl die Hybridisierung V zwischen den lokalisierten und den Leitungselekronen abnimmt. In zwei Dimensionen findet man ein ähnliches Valenzübergangsverhalten. Allerdings kann zusätzlich eine supraleitende Phase im Valenzübergangsgebiet auftreten. Um die supraleitende Phase zu untersuchen, betrachten wir einen Hamiltonoperator mit kleinen zusätzlichen Feldern, die die Eichsymmetrie brechen. Wir leiten Renormierungsgleichungen her, aus denen sich die supraleitenden Paarfunktionen selbstkonsistent bestimmen lassen. Unsere analytischen und numerischen Resultate zeigen, dass im Valenzübergangsgebiet d-Wellen-Supraleitung dominiert. Dies bestätigt eine Vermutung von Miyake, dass Valenzfluktuationen in Ce-basierten Schwerfermionensystemen bei hohen Drücken zur Supraleitung führen können
APA, Harvard, Vancouver, ISO, and other styles
2

Smith, Victoria Emma. "Theoretical studies of the periodic Anderson model." Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gilbert, Anne Beatrice. "Disorder and Interactions in the Periodic Anderson Model." Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.489444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Meyer, Karsten. "Flussgleichungen für das Anderson-Gitter zur Beschreibung von Schwer-Fermion-Systemen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2004. http://nbn-resolving.de/urn:nbn:de:swb:14-1079709122000-46905.

Full text
Abstract:
In der vorliegenden Arbeit wird die Physik von Schwer-Fermion-Systemen, die durch Lanthanid- und Aktinid-Übergangsmetallverbindungen realisiert werden, untersucht. Die Basis für eine theoretische Beschreibung bildet das Anderson-Gitter, welches das Wechselspiel freier Leitungselektronen und stark korrelierter Elektronen aus lokalisierten f-Orbitalen charakterisiert. Als Zugang zu diesem Modell wird die von Wegner vorgeschlagene Flussgleichungsmethode verwendet, ein analytisches Verfahren, welches auf der Konstruktion eines effektiven Hamilton-Operators basiert. Ein zentrales Thema dieser Arbeit ist die Beschreibung der elektronischen Struktur von Schwer-Fermion-Systemen. Insbesondere wird die Abhängigkeit statischer Größen vom Einfluss verschiedener Systemparameter betrachtet. Die Dynamik kollektiver Anregungen in Schwer-Fermion-Systemen wird an Hand der elektronischen Zustandsdichten und dynamischen magnetischen Suszeptibilitäten untersucht
The physical properties of heavy-fermion systems are examined. These systems are mainly formed by rare earth or actinide compounds. Their essential physics can be characterized by the periodic Anderson model which describes the interplay of itinerant metal electrons and localized, but strongly correlated f-electrons. The present calculations are based on the flow equations approach proposed by Wegner. This method uses a continuous unitary transformation to derive an effective Hamiltonian of an easy to treat structure. Within this framework the electronic structure of heavy-fermion systems is calculated and the influence of external parameters is studied. Beside the derivation of static properties the density of states and dynamic magnetic susceptibilities are investigated in order to characterize the nature of collective excitations
APA, Harvard, Vancouver, ISO, and other styles
5

Meyer, Karsten. "Flussgleichungen für das Anderson-Gitter zur Beschreibung von Schwer-Fermion-Systemen." Doctoral thesis, Technische Universität Dresden, 2003. https://tud.qucosa.de/id/qucosa%3A24313.

Full text
Abstract:
In der vorliegenden Arbeit wird die Physik von Schwer-Fermion-Systemen, die durch Lanthanid- und Aktinid-Übergangsmetallverbindungen realisiert werden, untersucht. Die Basis für eine theoretische Beschreibung bildet das Anderson-Gitter, welches das Wechselspiel freier Leitungselektronen und stark korrelierter Elektronen aus lokalisierten f-Orbitalen charakterisiert. Als Zugang zu diesem Modell wird die von Wegner vorgeschlagene Flussgleichungsmethode verwendet, ein analytisches Verfahren, welches auf der Konstruktion eines effektiven Hamilton-Operators basiert. Ein zentrales Thema dieser Arbeit ist die Beschreibung der elektronischen Struktur von Schwer-Fermion-Systemen. Insbesondere wird die Abhängigkeit statischer Größen vom Einfluss verschiedener Systemparameter betrachtet. Die Dynamik kollektiver Anregungen in Schwer-Fermion-Systemen wird an Hand der elektronischen Zustandsdichten und dynamischen magnetischen Suszeptibilitäten untersucht.
The physical properties of heavy-fermion systems are examined. These systems are mainly formed by rare earth or actinide compounds. Their essential physics can be characterized by the periodic Anderson model which describes the interplay of itinerant metal electrons and localized, but strongly correlated f-electrons. The present calculations are based on the flow equations approach proposed by Wegner. This method uses a continuous unitary transformation to derive an effective Hamiltonian of an easy to treat structure. Within this framework the electronic structure of heavy-fermion systems is calculated and the influence of external parameters is studied. Beside the derivation of static properties the density of states and dynamic magnetic susceptibilities are investigated in order to characterize the nature of collective excitations.
APA, Harvard, Vancouver, ISO, and other styles
6

Phan, Van Nham [Verfasser]. "Valence transition and superconductivity in the extended periodic Anderson model / von Van Nham Phan." 2009. http://d-nb.info/994730950/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Extended periodic Anderson model"

1

Anisimov, Vladimir, and Yuri Izyumov. "Periodic Anderson Model (PAM)." In Springer Series in Solid-State Sciences, 173–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04826-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Misra, P. K., D. G. Kanhere, and Joseph Callaway. "Periodic Anderson Model for Small Clusters." In Physics and Chemistry of Small Clusters, 445–50. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-0357-3_63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Feng, and Nicholas Kioussis. "Effect of Disorder in the Periodic Anderson Model." In Electron Correlations and Materials Properties, 267–71. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4715-0_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hatsugai, Y. "Monte Carlo Simulations for Several Correlated Electron Systems: dp-Model and Periodic Anderson Model." In Springer Proceedings in Physics, 457–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77154-5_90.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gebhard, Florian, and Dieter Vollhardt. "Variational Approach to Correlation Functions and to the Periodic Anderson Model in Infinite Dimensions." In Interacting Electrons in Reduced Dimensions, 123–28. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0565-1_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Didukh, L., Yu Skorenkyy, O. Kramar, and Yu Dovhopyaty. "Effective Hamiltonians for Magnetic Ordering Within Periodic Anderson-Hubbard Model for Quantum Dot Array." In Springer Proceedings in Physics, 441–59. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17759-1_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

FAZEKAS, P. "VARIATIONAL GROUND STATES FOR THE PERIODIC ANDERSON MODEL." In Anomalous Rare Earths and Actinides, 545–47. Elsevier, 1987. http://dx.doi.org/10.1016/b978-1-4832-2948-5.50160-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

SASO, T. "QUANTUM MONTE CARLO SIMULATION OF THE ONE-DIMENSIONAL PERIODIC ANDERSON MODEL – NON-HALF-FILLED CASES." In Proceedings of the Yamada Conference XVIII on Superconductivity in Highly Correlated Fermion Systems, 95–98. Elsevier, 1987. http://dx.doi.org/10.1016/b978-1-4832-2920-1.50032-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Eckle, Hans-Peter. "Bose Gas in One Dimension: Lieb–Liniger Model." In Models of Quantum Matter, 545–82. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199678839.003.0015.

Full text
Abstract:
The coordinate Bethe ansatz can be extended to a model, the Lieb–Liniger model, of a one-dimensional gas of Bosons interacting with repulsive δ‎-function potentials. It has attracted attention due to its relevance for experimental developments in the fields of ultracold gases and optical lattices. This chapter provides an exposition of the related classical nonlinear Schrödinger equation, followed by its generalization to the quantum model. It explores a limiting case, the Tonks-Girardeau gas. The δ‎-function potentials supply a kind of boundary condition on the wave functions allowing us to analyze the eigenfunctions of the Bethe ansatz, which are examined on the infinite line and for periodic boundary conditions. The latter leads to the Bethe ansatz equations. The solution of these equations is achieved in the thermodynamic limit for the ground state and for low-lying excited states.
APA, Harvard, Vancouver, ISO, and other styles
10

Manton, Nicholas, and Nicholas Mee. "Atoms, Molecules and Solids." In The Physical World. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198795933.003.0010.

Full text
Abstract:
Chapter 9 presents an introductory overview of quantum chemistry and solid state physics. First, the Periodic Table is examined in terms of atomic structure, electron orbitals and the shell model. Simple polar and non-polar molecules are considered in terms of the overlap of atomic orbitals which gives rise to covalent bonding between atoms. Hückel theory is used to analyse the electronic structure of benzene and polyene molecules. These ideas are extended to periodic solids. Bloch’s theorem is used to explain their band structure in terms of molecular orbital theory. Band theory provides an explanation of the distinctions between metals, semi-conductors and insulators. Caesium chloride is used to illustrate how the band structure and properties of an ionic compound arise from its atomic structure. Metals are discussed, with emphasis on copper as an illustrative example, and the significance of the Fermi surface is explained. Ferromagnetism is considered in the transition metals.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Extended periodic Anderson model"

1

Kumar, Pramod, and N. S. Vidhyadhiraja. "Dynamics of Valence Fluctuations in the Extended Periodic Anderson Model." In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.3.012004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kojima, Yuhei, and Akihisa Koga. "Valence Fluctuations in the Extended Periodic Anderson Model at Finite Temperatures." In Proceedings of the 12th Asia Pacific Physics Conference (APPC12). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.1.012106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kubo, Katsunori. "Ferromagnetic States in the Periodic Anderson Model." In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.3.011023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Izyumov, Yu A. "The periodic Anderson model in the generating functional approach." In LECTURES ON THE PHYSICS OF HIGHLY CORRELATED ELECTRON SYSTEMS IX: Ninth Training Course in the Physics of Correlated Electron Systems and High-Tc Superconductors. AIP, 2005. http://dx.doi.org/10.1063/1.2080351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brasil, Reyolando M. "Anderson Localization Phenomenon in Periodic Structures." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12114.

Full text
Abstract:
We study the occurrence in structures of a phenomenon similar to Anderson localization. This the vibration modes localization in structures composed of several nominally identical lightly coupled modular substructures. In an ideal perfect model, the vibration modes are global in nature, spreading to the whole structure. In real structures there are no two completely identical segments. Constructive or loading imperfections generate slight variation of the dynamic characteristics of each module. As the level of disorder grows and coupling between modules becomes lighter, the resulting vibration modes change considerably. Vibration energy may become confined to a few segments. This is the Mode Localization Phenomenon. We present models of long modular planar trussed structures. Light coupling is considered between the initially identical modules. A certain degree of imperfection is introduced by adopting a slight variation in the loading of the modules. This will generate a small variation in the global stiffness of the system as the axial loads in the bars affect their Geometric Stiffness Matrices.
APA, Harvard, Vancouver, ISO, and other styles
6

TUAN, HOANG ANH, and NGUYEN TOAN THANG. "ON THE KONDO ENERGY OF THE PERIODIC ANDERSON MODEL WITH INTERACTING CONDUCTION ELECTRONS." In Proceedings of the 8th Asia-Pacific Physics Conference. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811523_0130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ikemachi, Takuya, Yasushi Shinohara, Takeshi Sato, Junji Yumoto, Makoto Kuwata-Gonokami, and Kenichi L. Ishikawa. "Extended solid-state three-step model for high-harmonic generation from periodic crystals." In 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8086783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Luo, Albert C. J., and Yu Guo. "Switching Bifurcation and Chaos in an Extended Fermi-Acceleration Oscillator." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68003.

Full text
Abstract:
The Fermi acceleration oscillator is extensively used to interpret many physical and mechanical phenomena. To understand dynamic behaviors of a particle (or a bouncing ball) in such a Fermi oscillator, a generalized Fermi acceleration model is developed. This model consists of a particle moving vertically between a fixed wall and the piston in a vibrating oscillator. The motion switching bifurcation of a particle in such a generalized Fermi oscillator is investigated through the theory of discontinuous dynamical systems. The analytical conditions for the motion switching are developed for numerical predictions. Thus, periodic motions in the Fermi-acceleration oscillator are given and the corresponding local stability and bifurcation are presented. Periodic and chaotic motions in such an oscillator are presented via the displacement time-history. From switching bifurcation and period-doubling bifurcation, parameter maps of periodic and chaotic motions will be developed for a global view of motions in the Fermi acceleration oscillator. To illustrate motion switching phenomena, the acceleration responses of the particle and base in the Fermi oscillator are presented. Poincare mapping sections are also used to illustrate chaos, and energy dissipation in chaotic motions can be evaluated.
APA, Harvard, Vancouver, ISO, and other styles
9

Gonella, Stefano, and Massimo Ruzzene. "Homogenization of Vibrating Periodic Lattice Structures." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84428.

Full text
Abstract:
The paper describes a homogenization technique for periodic lattice structures. The analysis is performed by considering the irreducible unit cell as a building block that defines the periodic pattern. In particular, the continuum equivalent representation for the discrete structure is sought with the objective of retaining information regarding the local properties of the lattice, while condensing its global behavior into a set of differential equations. These equations can then be solved either analytically or numerically, thus providing a model which involves a significantly lower number of variables than those required for the detailed model of the assembly. The methodology is first tested by comparing the dispersion relations obtained through homogenization with those corresponding to the detailed model of the unit cells and then extended to the comparison of exact and approximate harmonic responses. This comparison is carried out for both one-dimensional and two-dimensional assemblies. The application to three-dimensional structures is not attempted in this work and will be approached in the future without the need for substantial conceptual changes in the theoretical procedure. Hence the presented technique is expected to be applicable to a wide range of periodic structures, with applications ranging from the design of structural elements of mechanical and aerospace interest to the optimization of smart materials with attractive mechanical, thermal or electrical properties.
APA, Harvard, Vancouver, ISO, and other styles
10

Lin, Shangchao, Yixuan Liu, and Zhuangli Cai. "High-Throughput Screening of Aperiodic Superlattice for Minimum Thermal Conductivity Based on Atomistic Simulation-Informed Effective Medium Theory and Genetic Algorithm." In ASME 2021 Heat Transfer Summer Conference collocated with the ASME 2021 15th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/ht2021-62825.

Full text
Abstract:
Abstract Superlattices with suppressed thermal conductivity are of great significance in the field of thermoelectricity and can improve the thermoelectric conversion efficiency of materials. Due to Anderson localization of coherent phonons, aperiodic superlattices have lower thermal conductivity than their periodic counterparts. At present, the thermal conductivity of superlattices is mostly predicted through ab initio or molecular dynamics simulations, which is computationally expensive and limits the size of the system. Meanwhile, there are many layered structural combinations for aperiodic superlattices, making it difficult to efficiently screen through all the combinations to search structures with the minimum thermal conductivity. In this work, based on a modified series thermal resistance model (STRM), a new effective medium theory (EMT) is established to predict the thermal conductivity of periodic and aperiodic superlattices. An adjacency factor near the maximum-resistance layers and a correction function, respectively, are introduced to account for the phonon coherence effect and the degree of randomization in the layer thickness. Combined with the genetic algorithm, EMT enables high-throughput screening of millions of aperiodic superlattice structures. This work demonstrates that the thermal conductivities of aperiodic superlattices at a wide range of system size can be constantly reduced to 1.4∼1.8 W/(m·K), which occurs at averaged periodic thicknesses in a stable range of 2.0∼2.5 nm.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography