Academic literature on the topic 'Extension bases'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Extension bases.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Extension bases"

1

Chen, Yuqun. "Gröbner–Shirshov Bases for Extensions of Algebras." Algebra Colloquium 16, no. 02 (2009): 283–92. http://dx.doi.org/10.1142/s1005386709000285.

Full text
Abstract:
An algebra [Formula: see text] is called an extension of the algebra M by B if M2 = 0, M is an ideal of [Formula: see text] and [Formula: see text] as algebras. In this paper, by using Gröbner–Shirshov bases, we characterize completely the extensions of M by B. An algorithm to find the conditions of an algebra A to be an extension of M by B is obtained.
APA, Harvard, Vancouver, ISO, and other styles
2

Hantash, Ra’edOmar Abu, and Mohammed H. AbuH Abu Yunis. "Distal extension bases: Removable partial dentures." Journal of Indian Prosthodontic Society 9, no. 4 (2009): 186. http://dx.doi.org/10.4103/0972-4052.206949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Antoniou, G., and C. K. MacNish. "Conservative extension concepts for nonmonotonic knowledge bases." International Journal of Intelligent Systems 15, no. 9 (2000): 859–77. http://dx.doi.org/10.1002/1098-111x(200009)15:9<859::aid-int3>3.0.co;2-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Aixian, and Keqin Feng. "Normal Bases on Galois Ring Extensions." Symmetry 10, no. 12 (2018): 702. http://dx.doi.org/10.3390/sym10120702.

Full text
Abstract:
Normal bases are widely used in applications of Galois fields and Galois rings in areas such as coding, encryption symmetric algorithms (block cipher), signal processing, and so on. In this paper, we study the normal bases for Galois ring extension R / Z p r , where R = GR ( p r , n ) . We present a criterion on the normal basis for R / Z p r and reduce this problem to one of finite field extension R ¯ / Z ¯ p r = F q / F p ( q = p n ) by Theorem 1. We determine all optimal normal bases for Galois ring extension.
APA, Harvard, Vancouver, ISO, and other styles
5

Boveda, Eugenia. "Reseña / Comunicación y Chagas. Bases para un diálogo urgente." +E: Revista de Extensión Universitaria, no. 16.Ene-Jun (June 9, 2022): e0004. http://dx.doi.org/10.14409/extension.2022.16.ene-jun.e0004.

Full text
Abstract:
Se trata de una recopilación de reflexiones y recomendaciones que surgieron, desde Argentina, a partir de la organización del 1° Conversatorio sobre Comunicación y Chagas (14 de abril de 2020), entre integrantes del grupo ¿De qué hablamos cuando hablamos de Chagas?, el Programa Nacional de Chagas del Ministerio de Salud de la Nación Argentina y la Universidad Nacional del Litoral, junto a una diversidad de actores sociales de distintos puntos del país y del exterior.Este libro pretende ser una herramienta clave para lograr un cambio en la percepción social del Chagas, con el propósito de que c
APA, Harvard, Vancouver, ISO, and other styles
6

PICKETT, ERIK JARL. "CONSTRUCTION OF SELF-DUAL INTEGRAL NORMAL BASES IN ABELIAN EXTENSIONS OF FINITE AND LOCAL FIELDS." International Journal of Number Theory 06, no. 07 (2010): 1565–88. http://dx.doi.org/10.1142/s1793042110003654.

Full text
Abstract:
Let F/E be a finite Galois extension of fields with abelian Galois group Γ. A self-dual normal basis for F/E is a normal basis with the additional property that Tr F/E(g(x), h(x)) = δg, h for g, h ∈ Γ. Bayer-Fluckiger and Lenstra have shown that when char (E) ≠ 2, then F admits a self-dual normal basis if and only if [F : E] is odd. If F/E is an extension of finite fields and char (E) = 2, then F admits a self-dual normal basis if and only if the exponent of Γ is not divisible by 4. In this paper, we construct self-dual normal basis generators for finite extensions of finite fields whenever th
APA, Harvard, Vancouver, ISO, and other styles
7

KOO, JA KYUNG, DONG HWA SHIN, and DONG SUNG YOON. "NORMAL BASES FOR MODULAR FUNCTION FIELDS." Bulletin of the Australian Mathematical Society 95, no. 3 (2017): 384–92. http://dx.doi.org/10.1017/s0004972716001362.

Full text
Abstract:
We provide a concrete example of a normal basis for a finite Galois extension which is not abelian. More precisely, let $\mathbb{C}(X(N))$ be the field of meromorphic functions on the modular curve $X(N)$ of level $N$. We construct a completely free element in the extension $\mathbb{C}(X(N))/\mathbb{C}(X(1))$ by means of Siegel functions.
APA, Harvard, Vancouver, ISO, and other styles
8

Mehta, Ritu, and Sanket Agrawal. "Embracing the organic way: is consumer preference the same for all brands?" International Journal of Retail & Distribution Management 48, no. 5 (2020): 453–64. http://dx.doi.org/10.1108/ijrdm-09-2019-0311.

Full text
Abstract:
PurposeThe growing market for organic products presents a tremendous opportunity for marketers to extend their existing brands. However, there is hardly any research that investigates the factors extension from an organic parent brand is preferred over extension into same product category for success of such brand extensions. This paper investigates the role of two different bases consumers may use to evaluate the extension into organic product – organic status of the parent brand and its similarity to the extended product category.Design/methodology/approachThe study involved a 2 × 2 (organic
APA, Harvard, Vancouver, ISO, and other styles
9

Capps, Richard H. "Extension and replacement bases for semisimple Lie algebras." Journal of Mathematical Physics 27, no. 4 (1986): 914–23. http://dx.doi.org/10.1063/1.527164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jouini, Abdellatif, and Khalifa Trimèche. "Biorthogonal multiresolution analyses and decompositions of Sobolev spaces." International Journal of Mathematics and Mathematical Sciences 28, no. 9 (2001): 517–34. http://dx.doi.org/10.1155/s0161171201010936.

Full text
Abstract:
The object of this paper is to construct extension operators in the Sobolev spacesHk(]−∞,0])andHk([0,+∞[)(k≥0). Then we use these extensions to get biorthogonal wavelet bases inHk(ℝ). We also give a construction inL2([−1,1])to see how to obtain boundaries functions.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!