Dissertations / Theses on the topic 'Extraction for solvent'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Extraction for solvent.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Rodarte, Alma Isabel Marín. "Predispersed solvent extraction." Thesis, Virginia Tech, 1988. http://hdl.handle.net/10919/45173.
Full textA new solvent extraction method has been developed for the extraction of metal and organic ions from very dilute aqueous solutions. The new method, which has been named Predispersed Solvent Extraction (POSE), is based on the principle that 1 there is no need to comminute both phases. All that is necessary is to comminute the solvent phase prior to contacting it with the feed. This is done by converting the solvent into aphrons, which are micron-sized globules encapsulated in a soapy film. Since the aphrons are so small, it takes a long time for the solvent to rise to the surface under the influence of gravity alone. Therefore, the separation is expedited by piggy-back flotation of the aphrons on specially prepared gas bubbles, which are somewhat larger than aphrons and are called colloidal gas aphrons (CGA).
Copper, uranium and chromium ions, and alizarin yellow were extracted from very dilute aqueous solutions using PDSE. Tests were performed in a vertical glass column in both batch and continuous modes, and in a continuous horizontal trough. The new solvent extraction procedure worked very efficiently and very quickly under laboratory conditions. Higher than 99% extraction was achieved in many of the tests performed.
Master of Science
Tarkan, Haci Mustafa. "Air-assisted solvent extraction." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102735.
Full textThe novel contribution in this thesis is the production of solvent-coated bubbles by exploiting foaming properties of kerosene-based solvents.
The basic set-up is a chamber to generate foam which is injected through a capillary (orifice diameter 2.5 mm) to produce solvent-coated bubbles (ca. 4.4 mm) which release into the aqueous phase. This generates a solvent specific surface area of ca. 3000 cm-1, equivalent to solvent droplets of ca. 20 mum. Demonstrating the process on dilute Cu solutions (down to 25 mg/L), high aqueous/organic ratios (ca. 75:1) and extractions are achieved. The solvent readily disengages to accumulate at the surface of the aqueous solution.
The LIX family of extractants imparts some foaming to kerosene based solvents but D2EHPA does not. An extensive experimental program determined that 1.5 ppm silicone oil provided the necessary foaming action without affecting extraction or stripping efficiency, greatly expanding the range of solvents that can be used in AASX.
To complement the foam study, films on bubbles blown in solvent were examined by interferometry (film thickness) and infra-red spectroscopy (film composition). A "bound" solvent layer was identified with an initial thickness of ca. 2 - 4 mum, comparable to that determined indirectly (by counting bubbles in an AASX trial and measuring solvent consumption). The film composition appeared to be independent of film thickness as it decreased with time.
As a start to scaling up, the single bubble generation system was adapted by installing up to 8 horizontal capillaries. The bubbles generated were ca. 3.4 mm. Trials showed the multi-bubble set up was a simple replication of the individual bubble case. Preliminary analysis of kinetic data shows a fit to a first-order model.
TRUJILLO, REBOLLO ANDRES. "SOLVENT EXTRACTION OF MOLYBDENUM." Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184009.
Full textBajpayee, Anurag. "Directional solvent extraction desalination." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78539.
Full text"September 2012." Cataloged from PDF version of thesis.
Includes bibliographical references (p. 131-137).
World water supply is struggling to meet demand. Production of fresh water from the oceans could supply this demand almost indefinitely. As global energy consumption continues to increase, water and energy resources are getting closely intertwined, especially with regards to the water consumption and contamination in the unconventional oil and gas industry. Development of effective, affordable desalination and water treatment technologies is thus vital to meeting future demand, maintaining economic development, enabling continued growth of energy resources, and preventing regional and international conflict. We have developed a new low temperature, membrane-free desalination technology using directional solvents capable of extracting pure water from a contaminated solution without themselves dissolving in the recovered water. This method dissolves the water into a directional solvent by increasing its temperature, rejects salts and other contaminants, then recovers pure water by cooling back to ambient temperature, and re-uses the solvent. The directional solvents used here include soybean oil, hexanoic acid, decanoic acid, and octanoic acid with the last two observed to be the most effective. These fatty acids exhibit the required characteristics by having a hydrophilic carboxylic acid end which bonds to water molecules but the hydrophobic chain prevents the dissolution of water soluble salts as well the dissolution of the solvent in water. Directional solvent extraction may be considered a molecular-level desalination approach. Directional Solvent Extraction circumvents the need for membranes, uses simple, inexpensive machinery, and by operating at low temperatures offers the potential for using waste heat. This technique also lends itself well to treatment of feed waters over a wide range of total dissolved solids (TDS) levels and is one of the very few known techniques to extract water from saturated brines. We demonstrate >95% salt rejection for seawater TDS concentrations (35,000 ppm) as well as for oilfield produced water TDS concentrations (>100,000 ppm) and saturated brines (300,000 ppm) through a benchtop batch process, and recovery ratios as high as 85% for feed TDS of 35,000 ppm through a multi-stage batch process. We have also designed, constructed, and demonstrated a semi-continuous process prototype. The energy and economic analysis suggests that this technique could become an effective, affordable method for seawater desalination and for treatment of produced water from unconventional oil and gas extraction.
by Anurag Bajpayee.
Ph.D.
Tavakolikhaledi, Mohammadreza. "Vanadium : leaching and solvent extraction." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/46814.
Full textDuhayon, Christophe. "Copper solvent extraction by ultrasound-assisted emulsification." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210155.
Full texton solvent extraction. This process should fit the exploitation of small local
copper-rich deposits. In these conditions, the plant has to be as compact as
possible in order to be easily transported from one location to a subsequent
one. Improved extraction kinetics could ensure a high throughput of the
plant despite its compactness. In addition, the extraction reagent should
not be damaging for the environnement. On this basis, we propose to use
ultrasound-assisted solvent extraction. The main idea is to increase the
extraction kinetics by forming an emulsion in place of a dispersion thanks to
the intense cavitation produced by ultrasound. The benefit of this method
is to improve the copper extraction kinetics by increasing the interfacial
surface area and decreasing the width of the diffusion layer. We studied the
implementation of an highly branched decanoic acid (known as Versatic-
10®acid) as a copper extraction reagent dispersed in kerosene.
Emulsification is monitored through the Sauter diameter of the organic
phase droplets in aqueous phase. This diameter is measured during pulsed
and continuous ultrasound irradiation via a static light scattering technique.
The phenomenon of emulsification of our system by ultrasound is effective,
and the emulsification process carried out in the pulsed ultrasound mode is
at least as efficient as the emulsification obtained under continuous mode.
No improvement of emulsification is observed beyond a threshold time of
the ultrasound impulse. This may be attributed to a competition between
disruption and coalescence. The use of mechanical stirring combined with
pulsed ultrasound allows to control the droplet size distribution.
In presence of ultrasound, the extraction kinetics of Versatic-10 acid is
multiplied by a factor ten, and therefore reached a value similar to the kinetics
observed without ultrasound with an industrial extractant such as
LIX-860I®(Cognis). Extraction kinetics measurements are carried out by
monitoring the copper ion concentration in the aqueous phase with an electrochemical
cell.
We conclude that ultrasound-assisted emulsification can be implemented
under certain conditions. Emulsification is a first step, and the following
destabilization step has to be studied. The device using ultrasound-assisted
emulsification should be followed by an efficient settling-coalescing device. A
possible solution would be to promote emulsion destabilization by increasing
the ionic strength with an addition of MgSO4, a salt that is not extracted
by the extraction reagent in the considered range of pH.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Suriyachat, Duangkamol. "Zirconium solvent extraction using organophosphorus compounds." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60718.
Full textThe major variables studied were hydrochloric acid, extractant and zirconium concentrations, and phase ratio. With both reagents, zirconium is extracted rapidly. Extraction increases with increasing hydrochloric acid concentration, and zirconium is loaded as its neutral tetrachloride complex by a solvation reaction. The loaded zirconium forms a di-solvate, except at high excess extractant concentrations, where solvation numbers greater than 2 are found. At a constant total chloride concentration, the zirconium extraction level is maintained if hydrochloric acid is partially replaced by lithium chloride, provided sufficient hydrochloric acid is retained to prevent zirconium hydrolysis. Distribution coefficients decease with increasing zirconium concentration, suggesting that polymerization occurs in the aqueous phase.
For given conditions, zirconium extraction into Cyanex 923 is higher than for Cyanex 925. However, loading selectivity for zirconium over other metals has not been studied. A few preliminary experiments have shown that aqueous solutions of ammonium carbonate are potential stripping agents.
Hanif, Mohammed. "Mass transfer studies in solvent extraction." Thesis, Teesside University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328022.
Full textChimpalee, Dolrudee. "Applications of ion-pair solvent extraction." Thesis, Queen's University Belfast, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336039.
Full textLukhezo, Muchinyarawo. "Reactive solvent extraction of amino acids." Thesis, London South Bank University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245090.
Full textAnthony, Renil J. "Solvent Extraction of Lipids from Microalgae." Ohio University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1280854965.
Full textEllis, Ross Johannes. "Chlorometallate extraction (base metals)." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/5938.
Full textFarawila, Anne. "Supercritical fluid extraction : Spectroscopic study of interactions comparison to solvent extraction." Université Louis Pasteur (Strasbourg) (1971-2008), 2005. https://publication-theses.unistra.fr/public/theses_doctorat/2005/FARAWILA_Anne_2005.pdf.
Full textSupercritical fluid carbon dioxide (SF-CO2) was chosen to study Supercritical Fluid Extraction (SFE) of cesium and uranium. At first, crown ethers were considered as chelating agents for the SFE of cesium. The role of water and its interaction with crown ethers were especially studied using Fourier-Transform Infra-Red (FT-IR) spectroscopy in SF-CO2. A sandwich configuration between two crown ethers and a water molecule was observed in the SF-CO2 phase for the first time. The equilibrium between the single and the bridge configurations was defined. The enthalpy of the hydrogen bond formation was also calculated. These results were then compared to the one in different mixtures of chloroform and carbon tetra-chloride using Nuclear Magnetic Resonance (NMR). To conclude this first part and in order to understand the whole picture of the recovery of cesium, I studied the role of water in the equilibrium between the cesium and the dicyclohexano18-crown-6. In a second part, the supercritical fluid extraction of uranium was studied in SF-CO2. For this purpose, different complexes of TriButyl Phosphate (TBP), nitric acid and water were used as chelating and oxidizing agents. I first used FT-IR to study the TBP-water interaction in SF-CO2. These results were then compared to the one obtained with NMR in chloroform. NMR spectroscopy was also used to understand the TBP-nitric acid-water interaction first alone and then in chloroform. To conclude my research work, I succeeded to improve the efficiency of uranium extraction and stripping into water for a pilot-plant where enriched uranium is extracted from incinerated waste coming from nuclear fuel fabrication. TBP-nitric acid complexes were used in SF-CO2 for the extraction of uranium from ash
Fowler, Sandra Dee. "COPPER SOLVENT EXTRACTION FROM CHLORIDE-SULFATE MEDIA." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275369.
Full textPornsinlapatip, Pornpun. "Flow-injection solvent extraction of metal chelates." Thesis, Queen's University Belfast, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284394.
Full textCopcutt, Robert Charles. "Modeling of a counter-current adsorption process for removal and recovery of dissolved organics from aqueous effluents." Thesis, University of Cape Town, 1988. http://hdl.handle.net/11427/23191.
Full textHealy, Mary Rose. "Outer-sphere interactions in metal solvent extraction systems." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28712.
Full textAshrafizadeh, Seyed Nezameddin. "Solvent extraction and liquid membrane separation of rhodium." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=37698.
Full textThe results of the lab-scale experiments using a SLM of Kelex 100 having a surface area of 44 cm2 are reported. The optimum conditions for Rh permeation were found as a feed solution of 2.5 M HCl and a strip solution of 0.1 M HCl. The SLM was quite stable at the optimum conditions with no sign of organic loss or membrane deterioration after 72 hours of operation. It was determined that the HCl activity gradient across the membrane acts as the driving force that "pumps" the non-aquated Rh chlorocomplexes against their concentration gradient. The mechanism of Rh permeation was the ion-pair formation between the protonated Kelex 100 and RhCl6 3- complexes. The rate of Rh permeation was in the order of 10-6 mol.m-2.s-1. The mechanism of HCl and H2O permeation, which were co-extracted along with Rh chlorocomplexes, were found to be the hydration of protons at the low feed acid region and the formation of microemulsions at the high feed acid region. The permeated acid and water were separated from the SLM receiving phase by contacting the latter phase with an organic solution of trioctylamine (TOA). The chlorocomplexes of Rh(III) and acid are readily extracted to the TOA organic phase and subsequently subjected to differential stripping with a concentrated solution of Cl- and a mild NaOH solution, respectively. By interfacing the TOA solvent extraction with the SLM of Kelex 100 highly concentrated solutions of Rh (at least 10 times the initial concentration) and raffinates essentially free of rhodium were produced.
The UV-Visible investigations revealed that the bromocomplexes of Rh undergo aquation to a much lesser extent than that of the chlorocomplexes. The chlorocomplexes of Rh were converted to bromocomplexes by precipitating first the Na(NH4)2Rh(NO2)6 salt and subsequently dissolving that in an HBr solution. The newly formed bromocomplexes of Rh(III) responded very favorably to extraction with Kelex 100. Relatively high distribution coefficients, about 20, and very steep extraction isotherms were generated. The freshly loaded Kelex 100 organic was efficiently stripped upon contact with a strip solution of 6--8 M HCl and a contact time of 10--12 hours. The developed system shows high promise from a practical implementation point of view.
Gordon, Ross John. "Improved mass transport efficiency in copper solvent extraction." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/5673.
Full textPschirer, David M. "Electrochemical uranium valence control in centrifugal solvent extraction contractors." Thesis, Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/12995.
Full textShoko, Lay. "The chemistry of the alkali-induced solubilisation of coal." Pretoria : [s.n.], 2005. http://upetd.up.ac.za/thesis/available/etd-02222007-173845.
Full textRashid, Salman Ghanem. "Studies on copper extraction with hydroxyoxime extractants for the design of hollow fibre membrane based extraction processes." Thesis, University of South Wales, 1999. https://pure.southwales.ac.uk/en/studentthesis/studies-on-copper-extraction-with-hydroxyoxime-extractants-for-the-design-of-hollow-fibre-membrane-based-extraction-processes(7e631b77-71e2-4d6e-8c03-4636d42f9f69).html.
Full textChoi, Kwansik. "Molecular interactions in polar solvents." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/17851.
Full textJohnson, Timothy Lee. "Surface mediated reduction of chlorinated solvents by zero-valent iron /." Full text open access at:, 1997. http://content.ohsu.edu/u?/etd,598.
Full textHaupt, Petronella. "Effective solvent extraction of coal and subsequent separation processes." Diss., Pretoria : [s.n.], 2006. http://upetd.up.ac.za/thesis/available/etd-08282007-113611.
Full textAccompanied by a CD-ROM containing Matlab programs. Includes bibliographical references. Available on the Internet via the World Wide Web.
Cattrall, R. W. "Studies in solvent extraction chemistry and ion-selective electrodes /." Title page and contents only, 1985. http://web4.library.adelaide.edu.au/theses/09SD/09sdc369.pdf.
Full textRodarte, Alma Isabel Marín. "Predispersed solvent extraction of copper from dilute aqueous solution /." This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-07282008-134126/.
Full textChamupathi, Virittamulla Gamage. "Role of the interface in metal solvent extraction kinetics." Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184256.
Full textHaq, Fida-Ul. "Solvent extraction of copper and zinc from aqueous solution." Thesis, Teesside University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283231.
Full textMahmood, Z. "Some studies of modelling in solvent extraction of metals." Thesis, Teesside University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379117.
Full textRambocus, Subhas. "Reactive solvent extraction of dicarboxylic and carboxylic-sulfonic acids." Thesis, London South Bank University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245144.
Full textFowler, Michael James. "Construction of prototype system for directional solvent extraction desalination." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/76130.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 37-38).
Directional solvent extraction has been demonstrated as a low temperature, membrane free desalination process. This method dissolves the water into an inexpensive, benign directional solvent, rejects the contaminants, then recovers pure water, and re-uses the solvent. In order to bring this technology closer to real world application, a continuous process prototype for a directional solvent extraction system was developed and tested. Octanoic acid was used as the solvent of choice, and a system capable of producing up to 7 gallons per day of fresh water was constructed. The system was tested to effectively desalinate the feed water, and the total system power was less than 7 kW. The system was constructed and first tested to run fresh water and solvent through it. Fresh water was dissolved in and separated, as expected, from the solvent at a rate of about 2 gpd. Saline water containing 3.5% sodium chloride was then used as feedwater and the desalinated water was recovered at a rate of about 1 gpd with an average salinity of 0.175%. Effective continuous operation of the directional solvent extraction prototype was demonstrated. Certain design improvements to increase efficiency, optimize component sizes, and decrease energy consumption are suggested. The demonstrated system has a wide range of applications, including production of fresh water from the sea, as well as, treatment of produced and flowback water from shale gas and oil extraction.
by Michael James Fowler.
S.B.
Rodarte, Alma Isabel MarÃn. "Predispersed solvent extraction of copper from dilute aqueous solution." Diss., Virginia Tech, 1991. http://hdl.handle.net/10919/38846.
Full textPh. D.
Sundell, Oscar. "Solvent extraction of antimony and tin from speiss leachate." Thesis, Luleå tekniska universitet, Kemiteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-65822.
Full textDakubo, Francis. "Sustainable Mining - Solving the Problem of Chalcopyrite Treatment/Processing - Leaching, Solvent Extraction & Flotation." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/604862.
Full textOla, Pius Dore. "Solvent extraction and liquid membrane containing ionic liquids and deep eutectic solvents for metal separation." Thesis, https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13097323/?lang=0, 2018. https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13097323/?lang=0.
Full textNavarro, Maria del Carmen. "Hydrogen stripping of copper from loaded LIX 65N." Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66059.
Full textTawfik, Wahid Yosry. "Design of optimal fuel grade ethanol recovery system using solvent extraction." Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/11152.
Full textWilson, Andrew Matthew. "Ditopic reagents for the solvent extraction of platinum group metals." Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/16864.
Full textYoung, Matthew J. "Utilization of predispersed solvent extraction for removal and enzymatic degradation of chlorinated solvents in ground water." Thesis, This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-08222008-063547/.
Full textXie, Feng. "Solvent extraction of copper and cyanide from waste cyanide solution." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/25746.
Full textValentin, Melissa McShea. "Laboratory study of solvent extraction of polychlorinated biphenyls in soil." Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=31553.
Full textPitt, Julian Llewellyn. "The behaviour of mineral particles in uranium solvent extraction systems." Thesis, Imperial College London, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339619.
Full textUngerer, Maria Johanna. "Separation of tantalum and niobium by solvent extraction / M.J. Ungerer." Thesis, North-West University, 2012. http://hdl.handle.net/10394/9850.
Full textThesis (MSc (Chemistry))--North-West University, Potchefstroom Campus, 2013.
Arnott, Iain. "Solvent extraction of fermentation products using electrostatic and centrifugal fields." Thesis, Heriot-Watt University, 1993. http://hdl.handle.net/10399/1465.
Full textMcGillivary, Angela. "Reactive solvent extraction of #beta#-lactam antibiotics and other anions." Thesis, London South Bank University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326763.
Full textFryer-Kanssen, Izaak. "Advancing solvent extraction technology for improved management of contaminated liquors." Thesis, Lancaster University, 2017. http://eprints.lancs.ac.uk/124321/.
Full textDoidge, Euan Douglas. "Designing reagents for the solvent extraction of critical metal resources." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31070.
Full textEmeleus, Lucy C. "Novel ligands for the recovery of copper via solvent extraction." Thesis, University of Edinburgh, 1999. http://hdl.handle.net/1842/14790.
Full textAlvarenga, Carlos Leon Guimarães de. "Estudo da extração líquido-líquido de urânio com alamine 336 a partir de meio sulfúrico na ausência e na presença de íons cloreto." CNEN - Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, 2010. http://www.bdtd.cdtn.br//tde_busca/arquivo.php?codArquivo=264.
Full textUranium is usually recovered from ores by sulphuric acid leaching followed by solvent extraction in order to produce a uranium ore concentrate. Such route is used by Indústrias Nucleares do Brasil S/A - INB, at Caetité/BA, Brazil, which uses the tertiary amine Alamine336 to extract uranium from the sulphuric liquor and a sodium chloride solution as stripping agent. Due to water scarcity in this region, all water used in the process is recirculated after treatment with lime. At this treatment the chloride ion (Cl-) is not removed, causing the increase in Cl- concentration with each recirculation of water, reducing the efficiency of extraction of uranium, causing a drop in production of uranium concentrate and financial losses. Eventually the INB Company is required to add new water in the process to reduce the content of Cl-. In this work, a comparative evaluation between the following uranium extraction systems is carried out: U-H2SO4-Alamine 336 and U-H2SO4-Cl-Alamine 336. In the first system, the uranium concentration ranged from 0.4 to 2.1 g/L. In the second system, the uranium concentration was set at 2.0 g/L and chloride ion concentration ranged from 1 to 7 g/L. In both systems the concentration of Alamine 336 ranged from 0.05 to 0.20 mol/L and the sulphate (SO42-) concentration from 0.24 to 1.05 mol/L. Exxsol D100 and tridecanol 5% v/v were used as diluent and modifier, respectively. The comparison of the results showed that chloride ions have a negative impact on the uranium extraction with Alamine 336. In the absence of chloride ions, 90% of extraction is achieved for extractant content of 0.10 mol/L or higher, for all sulphate and uranium concentrations studied. In the presence of chloride ions, the same extraction efficiency is reached solely for extractant content of 0.20 mol/L and for chloride ions content lower than 3.0 g/L. The percentage on the uranium extraction is drastically reduced at high chloride concentrations, whereas at low chloride concentrations such negative effect may be inhibited by increasing the Alamine336 concentration or decreasing sulphate concentration. In order to explain the negative impact of chloride ions on uranium extraction, two probable mechanisms of extraction for both reaction systems are shown: competition between chloride and sulphate in amine protonation and the chloride extraction by amine-sulphate complex, competing with uranium (VI) oxide sulphate. These mechanisms may occur simultaneously.