Dissertations / Theses on the topic 'Extreme Gradient Boosting Classifier'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 16 dissertations / theses for your research on the topic 'Extreme Gradient Boosting Classifier.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Nikolaou, Nikolaos. "Cost-sensitive boosting : a unified approach." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/costsensitive-boosting-a-unified-approach(ae9bb7bd-743e-40b8-b50f-eb59461d9d36).html.
Full textAl-Mter, Yusur. "Automatic Prediction of Human Age based on Heart Rate Variability Analysis using Feature-Based Methods." Thesis, Linköpings universitet, Statistik och maskininlärning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166139.
Full textZhang, Yi. "Strategies for Combining Tree-Based Ensemble Models." NSUWorks, 2017. http://nsuworks.nova.edu/gscis_etd/1021.
Full textAndeta, Jemal Ahmed. "Road-traffic accident prediction model : Predicting the Number of Casualties." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-20146.
Full textSseguya, Raymond. "Forecasting anomalies in time series data from online production environments." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166044.
Full textOldenkamp, Emiel. "Using supervised learning methods to predict the stop duration of heavy vehicles." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-50977.
Full textPeng, I.-Hsuan, and 彭毅軒. "Gradient Boosting Classifier based on Gaussian Process." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/uyjc7c.
Full textZHUANG, BO-SHENG, and 莊博勝. "Demand Forecasting of Notebook Component Spare parts by Using Extreme Gradient Boosting." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/kd26za.
Full textWu, Guan-Jhih, and 吳冠鋕. "Constructing a Credit Risk Assessment Model for Financial Institution by eXtreme Gradient Boosting Decision Tree." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/4sgzcr.
Full textOu, Ming-Hong, and 歐明鴻. "Constructing a TFT-LCD Panel Classification Model for Automatic Optical Inspection using eXtreme Gradient Boosting Decision Tree." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/52npc3.
Full textBureš, Michal. "Strojové učení v algoritmickém obchodování." Master's thesis, 2021. http://www.nusl.cz/ntk/nusl-438032.
Full text(9778355), Raja Avula. "Towards Accurate Modelling of Customer Purchase Behaviour in E-commerce: An Enhanced Machine Learning Approach." Thesis, 2025. https://figshare.com/articles/thesis/Towards_Accurate_Modelling_of_Customer_Purchase_Behaviour_in_E-commerce_An_Enhanced_Machine_Learning_Approach/29333417.
Full textNascimento, Matheus Lopes do. "Investigation of Geothermal Potential Zones with Machine Learning in Mainland Portugal." Master's thesis, 2022. http://hdl.handle.net/10362/134617.
Full textMadrid, Ernesto Javier Aguilar. "Short-Term Electricity Demand Forecasting with Machine Learning." Master's thesis, 2021. http://hdl.handle.net/10362/120626.
Full textRoy, Bhupendra. "Identifying Deception in Online Reviews: Application of Machine Learning, Deep Learning and Natural Language Processing." Master's thesis, 2020. http://hdl.handle.net/10362/101187.
Full textMolisse, Giulia. "Above ground biomass and carbon sequestration estimation -Implementation of a sentinel-2 based exploratory workflow." Master's thesis, 2021. http://hdl.handle.net/10362/113902.
Full text