Academic literature on the topic 'Extrusion Based Printing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Extrusion Based Printing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Extrusion Based Printing"

1

Faes, M., H. Valkenaers, F. Vogeler, J. Vleugels, and E. Ferraris. "Extrusion-based 3D Printing of Ceramic Components." Procedia CIRP 28 (2015): 76–81. http://dx.doi.org/10.1016/j.procir.2015.04.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Xing, Yu, Yu Zhou, Xin Yan, et al. "Shell thickening for extrusion-based ceramics printing." Computers & Graphics 97 (June 2021): 160–69. http://dx.doi.org/10.1016/j.cag.2021.04.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Azad, Mohammad A., Deborah Olawuni, Georgia Kimbell, Abu Zayed Md Badruddoza, Md Shahadat Hossain, and Tasnim Sultana. "Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: A Holistic Materials–Process Perspective." Pharmaceutics 12, no. 2 (2020): 124. http://dx.doi.org/10.3390/pharmaceutics12020124.

Full text
Abstract:
Three dimensional (3D) printing as an advanced manufacturing technology is progressing to be established in the pharmaceutical industry to overcome the traditional manufacturing regime of 'one size fits for all'. Using 3D printing, it is possible to design and develop complex dosage forms that can be suitable for tuning drug release. Polymers are the key materials that are necessary for 3D printing. Among all 3D printing processes, extrusion-based (both fused deposition modeling (FDM) and pressure-assisted microsyringe (PAM)) 3D printing is well researched for pharmaceutical manufacturing. It is important to understand which polymers are suitable for extrusion-based 3D printing of pharmaceuticals and how their properties, as well as the behavior of polymer–active pharmaceutical ingredient (API) combinations, impact the printing process. Especially, understanding the rheology of the polymer and API–polymer mixtures is necessary for successful 3D printing of dosage forms or printed structures. This review has summarized a holistic materials–process perspective for polymers on extrusion-based 3D printing. The main focus herein will be both FDM and PAM 3D printing processes. It elaborates the discussion on the comparison of 3D printing with the traditional direct compression process, the necessity of rheology, and the characterization techniques required for the printed structure, drug, and excipients. The current technological challenges, regulatory aspects, and the direction toward which the technology is moving, especially for personalized pharmaceuticals and multi-drug printing, are also briefly discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Jinsong, Chen, Bao Enquan, Huang Dazhi, Ding Yunfei, and Qiu Xuhui. "Extrusion Freeforming-Based 3D Printing of Ceramic Materials." MATERIALS TRANSACTIONS 61, no. 11 (2020): 2236–40. http://dx.doi.org/10.2320/matertrans.mt-m2020167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wolfs, R. J. M., and A. S. J. Suiker. "Structural failure during extrusion-based 3D printing processes." International Journal of Advanced Manufacturing Technology 104, no. 1-4 (2019): 565–84. http://dx.doi.org/10.1007/s00170-019-03844-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hergel, Jean, Kevin Hinz, Sylvain Lefebvre, and Bernhard Thomaszewski. "Extrusion-based ceramics printing with strictly-continuous deposition." ACM Transactions on Graphics 38, no. 6 (2019): 1–11. http://dx.doi.org/10.1145/3355089.3356509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cardona, Carolina, Abigail H. Curdes, and Aaron J. Isaacs. "Effects of Filament Diameter Tolerances in Fused Filament Fabrication." IU Journal of Undergraduate Research 2, no. 1 (2016): 44–47. http://dx.doi.org/10.14434/iujur.v2i1.20917.

Full text
Abstract:
Fused filament fabrication (FFF) is one of the most popular additive manufacturing (3D printing) technologies due to the growing availability of low-cost desktop 3D printers and the relatively low cost of the thermoplastic filament used in the 3D printing process. Commercial filament suppliers, 3D printer manufacturers, and end-users regard filament diameter tolerance as an important indicator of the 3D printing quality. Irregular filament diameter affects the flow rate during the filament extrusion, which causes poor surface quality, extruder jams, irregular gaps in-between individual extrusions, and/or excessive overlap, which eventually results in failed 3D prints. Despite the important role of the diameter consistency in the FFF process, few studies have addressed the required tolerance level to achieve highest 3D printing quality. The objective of this work is to develop the testing methods to measure the filament tolerance and control the filament fabrication process. A pellet-based extruder is utilized to fabricate acrylonitrile butadiene styrene (ABS) filament using a nozzle of 1.75 mm in diameter. Temperature and extrusion rate are controlled parameters. An optical comparator and an array of digital calipers are used to measure the filament diameter. The results demonstrate that it is possible to achieve high diameter consistency and low tolerances (0.01mm) at low extrusion temperature (180 °C) and low extrusion rate (10 in/min).
APA, Harvard, Vancouver, ISO, and other styles
8

Menshutina, Natalia, Andrey Abramov, Pavel Tsygankov, and Daria Lovskaya. "Extrusion-Based 3D Printing for Highly Porous Alginate Materials Production." Gels 7, no. 3 (2021): 92. http://dx.doi.org/10.3390/gels7030092.

Full text
Abstract:
Three-dimensional (3D) printing is a promising technology for solving a wide range of problems: regenerative medicine, tissue engineering, chemistry, etc. One of the potential applications of additive technologies is the production of highly porous structures with complex geometries, while printing is carried out using gel-like materials. However, the implementation of precise gel printing is a difficult task due to the high requirements for “ink”. In this paper, we propose the use of gel-like materials based on sodium alginate as “ink” for the implementation of the developed technology of extrusion-based 3D printing. Rheological studies were carried out for the developed alginate ink compositions. The optimal rheological properties are gel-like materials based on 2 wt% sodium alginate and 0.2 wt% calcium chloride. The 3D-printed structures with complex geometry were successfully dried using supercritical drying. The resulting aerogels have a high specific surface area (from 350 to 422 m2/g) and a high pore volume (from 3 to 3.78 cm3/g).
APA, Harvard, Vancouver, ISO, and other styles
9

Tümer, Eda Hazal, and Husnu Yildirim Erbil. "Extrusion-Based 3D Printing Applications of PLA Composites: A Review." Coatings 11, no. 4 (2021): 390. http://dx.doi.org/10.3390/coatings11040390.

Full text
Abstract:
Polylactic acid (PLA) is the most widely used raw material in extrusion-based three-dimensional (3D) printing (fused deposition modeling, FDM approach) in many areas since it is biodegradable and environmentally friendly, however its utilization is limited due to some of its disadvantages such as mechanical weakness, water solubility rate, etc. FDM is a simple and more cost-effective fabrication process compared to other 3D printing techniques. Unfortunately, there are deficiencies of the FDM approach, such as mechanical weakness of the FDM parts compared to the parts produced by the conventional injection and compression molding methods. Preparation of PLA composites with suitable additives is the most useful technique to improve the properties of the 3D-printed PLA parts obtained by the FDM method. In the last decade, newly developed PLA composites find large usage areas both in academic and industrial circles. This review focuses on the chemistry and properties of pure PLA and also the preparation methods of the PLA composites which will be used as a raw material in 3D printers. The main drawbacks of the pure PLA filaments and the necessity for the preparation of PLA composites which will be employed in the FDM-based 3D printing applications is also discussed in the first part. The current methods to obtain PLA composites as raw materials to be used as filaments in the extrusion-based 3D printing are given in the second part. The applications of the novel PLA composites by utilizing the FDM-based 3D printing technology in the fields of biomedical, tissue engineering, human bone repair, antibacterial, bioprinting, electrical conductivity, electromagnetic, sensor, battery, automotive, aviation, four-dimensional (4D) printing, smart textile, environmental, and luminescence applications are presented and critically discussed in the third part of this review.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Bin, Rodica Cristescu, Douglas B. Chrisey, and Roger J. Narayan. "Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds." International Journal of Bioprinting 6, no. 1 (2020): 19. http://dx.doi.org/10.18063/ijb.v6i1.211.

Full text
Abstract:
Three-dimensional (3D) printing has been emerging as a new technology for scaffold fabrication to overcome the problems associated with the undesirable microstructure associated with the use of traditional methods. Solvent-based extrusion (SBE) 3D printing is a popular 3D printing method, which enables incorporation of cells during the scaffold printing process. The scaffold can be customized by optimizing the scaffold structure, biomaterial, and cells to mimic the properties of natural tissue. However, several technical challenges prevent SBE 3D printing from translation to clinical use, such as the properties of current biomaterials, the difficulties associated with simultaneous control of multiple biomaterials and cells, and the scaffold-to-scaffold variability of current 3D printed scaffolds. In this review paper, a summary of SBE 3D printing for tissue engineering (TE) is provided. The influences of parameters such as ink biomaterials, ink rheological behavior, cross-linking mechanisms, and printing parameters on scaffold fabrication are considered. The printed scaffold structure, mechanical properties, degradation, and biocompatibility of the scaffolds are summarized. It is believed that a better understanding of the scaffold fabrication process and assessment methods can improve the functionality of SBE-manufactured 3D printed scaffolds.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography