Journal articles on the topic 'Extrusion Based Printing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Extrusion Based Printing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Faes, M., H. Valkenaers, F. Vogeler, J. Vleugels, and E. Ferraris. "Extrusion-based 3D Printing of Ceramic Components." Procedia CIRP 28 (2015): 76–81. http://dx.doi.org/10.1016/j.procir.2015.04.028.
Full textXing, Yu, Yu Zhou, Xin Yan, et al. "Shell thickening for extrusion-based ceramics printing." Computers & Graphics 97 (June 2021): 160–69. http://dx.doi.org/10.1016/j.cag.2021.04.031.
Full textAzad, Mohammad A., Deborah Olawuni, Georgia Kimbell, Abu Zayed Md Badruddoza, Md Shahadat Hossain, and Tasnim Sultana. "Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: A Holistic Materials–Process Perspective." Pharmaceutics 12, no. 2 (2020): 124. http://dx.doi.org/10.3390/pharmaceutics12020124.
Full textJinsong, Chen, Bao Enquan, Huang Dazhi, Ding Yunfei, and Qiu Xuhui. "Extrusion Freeforming-Based 3D Printing of Ceramic Materials." MATERIALS TRANSACTIONS 61, no. 11 (2020): 2236–40. http://dx.doi.org/10.2320/matertrans.mt-m2020167.
Full textWolfs, R. J. M., and A. S. J. Suiker. "Structural failure during extrusion-based 3D printing processes." International Journal of Advanced Manufacturing Technology 104, no. 1-4 (2019): 565–84. http://dx.doi.org/10.1007/s00170-019-03844-6.
Full textHergel, Jean, Kevin Hinz, Sylvain Lefebvre, and Bernhard Thomaszewski. "Extrusion-based ceramics printing with strictly-continuous deposition." ACM Transactions on Graphics 38, no. 6 (2019): 1–11. http://dx.doi.org/10.1145/3355089.3356509.
Full textCardona, Carolina, Abigail H. Curdes, and Aaron J. Isaacs. "Effects of Filament Diameter Tolerances in Fused Filament Fabrication." IU Journal of Undergraduate Research 2, no. 1 (2016): 44–47. http://dx.doi.org/10.14434/iujur.v2i1.20917.
Full textMenshutina, Natalia, Andrey Abramov, Pavel Tsygankov, and Daria Lovskaya. "Extrusion-Based 3D Printing for Highly Porous Alginate Materials Production." Gels 7, no. 3 (2021): 92. http://dx.doi.org/10.3390/gels7030092.
Full textTümer, Eda Hazal, and Husnu Yildirim Erbil. "Extrusion-Based 3D Printing Applications of PLA Composites: A Review." Coatings 11, no. 4 (2021): 390. http://dx.doi.org/10.3390/coatings11040390.
Full textZhang, Bin, Rodica Cristescu, Douglas B. Chrisey, and Roger J. Narayan. "Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds." International Journal of Bioprinting 6, no. 1 (2020): 19. http://dx.doi.org/10.18063/ijb.v6i1.211.
Full textZhu, Sicong, Markus A. Stieger, Atze Jan van der Goot, and Maarten A. I. Schutyser. "Extrusion-based 3D printing of food pastes: Correlating rheological properties with printing behaviour." Innovative Food Science & Emerging Technologies 58 (December 2019): 102214. http://dx.doi.org/10.1016/j.ifset.2019.102214.
Full textChen, Kai-Wei, Ming-Jong Tsai, and Heng-Sheng Lee. "Multi-Nozzle Pneumatic Extrusion-Based Additive Manufacturing System for Printing Sensing Pads." Inventions 5, no. 3 (2020): 29. http://dx.doi.org/10.3390/inventions5030029.
Full textRojek, Izabela, Dariusz Mikołajewski, Marek Macko, Zbigniew Szczepański, and Ewa Dostatni. "Optimization of Extrusion-Based 3D Printing Process Using Neural Networks for Sustainable Development." Materials 14, no. 11 (2021): 2737. http://dx.doi.org/10.3390/ma14112737.
Full textJi, Shen, Koustubh Dube, Julian P. Chesterman, et al. "Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds." Biomaterials Science 7, no. 2 (2019): 560–70. http://dx.doi.org/10.1039/c8bm01269e.
Full textAlbar, Abdulrahman, Mehdi Chougan, Mazen J. Al- Kheetan, Mohammad Rafiq Swash, and Seyed Hamidreza Ghaffar. "Effective extrusion-based 3D printing system design for cementitious-based materials." Results in Engineering 6 (June 2020): 100135. http://dx.doi.org/10.1016/j.rineng.2020.100135.
Full textHu, Fuwen, Tadeusz Mikolajczyk, Danil Yurievich Pimenov, and Munish Kumar Gupta. "Extrusion-Based 3D Printing of Ceramic Pastes: Mathematical Modeling and In Situ Shaping Retention Approach." Materials 14, no. 5 (2021): 1137. http://dx.doi.org/10.3390/ma14051137.
Full textKirchmajer, D. M., R. Gorkin III, and M. in het Panhuis. "An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing." Journal of Materials Chemistry B 3, no. 20 (2015): 4105–17. http://dx.doi.org/10.1039/c5tb00393h.
Full textTian, Jing, Run Zhang, Jiayuan Yang, Weimin Chou, Ping Xue, and Yun Ding. "Additive Manufacturing of Wood Flour/PHA Composites Using Micro-Screw Extrusion: Effect of Device and Process Parameters on Performance." Polymers 13, no. 7 (2021): 1107. http://dx.doi.org/10.3390/polym13071107.
Full textLille, Martina, Anni Kortekangas, Raija-Liisa Heiniö, and Nesli Sozer. "Structural and Textural Characteristics of 3D-Printed Protein- and Dietary Fibre-Rich Snacks Made of Milk Powder and Wholegrain Rye Flour." Foods 9, no. 11 (2020): 1527. http://dx.doi.org/10.3390/foods9111527.
Full textTanwilaisiri, Anan, and Phichit Kajondecha. "Three-dimensional Printing of Supercapacitors based on Different Electrodes." Journal of Imaging Science and Technology 64, no. 5 (2020): 50401–1. http://dx.doi.org/10.2352/j.imagingsci.technol.2020.64.5.050401.
Full textSchlegel, Volker, Andreas Engels, Vesela Stoycheva, Stefano Bifaretti, and Andreas H. Foitzik. "From Biomaterial to Organoid - Bioprinting for Practice." Materials Science Forum 1016 (January 2021): 1285–90. http://dx.doi.org/10.4028/www.scientific.net/msf.1016.1285.
Full textKaufhold, Julia, Johannes Kohl, Venkatesh Naidu Nerella, et al. "Wood-based support material for extrusion-based digital construction." Rapid Prototyping Journal 25, no. 4 (2019): 690–98. http://dx.doi.org/10.1108/rpj-04-2018-0109.
Full textTrieu, Can Chi, Minh-Thien Nguyen, Thien-Toan Quan Le, et al. "Developement of 3D printer for silicate-based materials." Science & Technology Development Journal - Engineering and Technology 2, SI2 (2020): First. http://dx.doi.org/10.32508/stdjet.v2isi2.460.
Full textBukvić, Olivera, Vlastimir Radonjanin, Mirjana Malešev, and Mirjana Laban. "Basic fresh-state properties of extrusion-based 3D printed concrete." Gradjevinski materijali i konstrukcije 63, no. 4 (2020): 99–117. http://dx.doi.org/10.5937/grmk2004099b.
Full textAlgahtani, Mohammed S., Abdul Aleem Mohammed, and Javed Ahmad. "Extrusion-Based 3D Printing for Pharmaceuticals: Contemporary Research and Applications." Current Pharmaceutical Design 24, no. 42 (2019): 4991–5008. http://dx.doi.org/10.2174/1381612825666190110155931.
Full textMa, Guowei, Zhijian Li, Li Wang, and Gang Bai. "Micro-cable reinforced geopolymer composite for extrusion-based 3D printing." Materials Letters 235 (January 2019): 144–47. http://dx.doi.org/10.1016/j.matlet.2018.09.159.
Full textPetta, D., U. D’Amora, L. Ambrosio, D. W. Grijpma, D. Eglin, and M. D’Este. "Hyaluronic acid as a bioink for extrusion-based 3D printing." Biofabrication 12, no. 3 (2020): 032001. http://dx.doi.org/10.1088/1758-5090/ab8752.
Full textLacey, Steven D., Dylan J. Kirsch, Yiju Li, et al. "Extrusion-Based 3D Printing of Hierarchically Porous Advanced Battery Electrodes." Advanced Materials 30, no. 12 (2018): 1705651. http://dx.doi.org/10.1002/adma.201705651.
Full textNing, Liqun, and Xiongbiao Chen. "A brief review of extrusion-based tissue scaffold bio-printing." Biotechnology Journal 12, no. 8 (2017): 1600671. http://dx.doi.org/10.1002/biot.201600671.
Full textPlacone, Jesse K., and Adam J. Engler. "Recent Advances in Extrusion‐Based 3D Printing for Biomedical Applications." Advanced Healthcare Materials 7, no. 8 (2017): 1701161. http://dx.doi.org/10.1002/adhm.201701161.
Full textDores, Filipa, Magdalena Kuźmińska, Cindy Soares, et al. "Temperature and solvent facilitated extrusion based 3D printing for pharmaceuticals." European Journal of Pharmaceutical Sciences 152 (September 2020): 105430. http://dx.doi.org/10.1016/j.ejps.2020.105430.
Full textGholamipour-Shirazi, Azarmidokht, Ian T. Norton, and Tom Mills. "Designing hydrocolloid based food-ink formulations for extrusion 3D printing." Food Hydrocolloids 95 (October 2019): 161–67. http://dx.doi.org/10.1016/j.foodhyd.2019.04.011.
Full textDiederichs, Elizabeth, Maisyn Picard, Boon Peng Chang, Manjusri Misra, and Amar Mohanty. "Extrusion Based 3D Printing of Sustainable Biocomposites from Biocarbon and Poly(trimethylene terephthalate)." Molecules 26, no. 14 (2021): 4164. http://dx.doi.org/10.3390/molecules26144164.
Full textSager, Valeska F., Merete B. Munk, Mikka Stenholdt Hansen, Wender L. P. Bredie, and Lilia Ahrné. "Formulation of Heat-Induced Whey Protein Gels for Extrusion-Based 3D Printing." Foods 10, no. 1 (2020): 8. http://dx.doi.org/10.3390/foods10010008.
Full textLamm, Meghan E., Lu Wang, Vidya Kishore, et al. "Material Extrusion Additive Manufacturing of Wood and Lignocellulosic Filled Composites." Polymers 12, no. 9 (2020): 2115. http://dx.doi.org/10.3390/polym12092115.
Full textSuriboot, Jakkrit, Alec C. Marmo, Bryan Khai D. Ngo, et al. "Amphiphilic, thixotropic additives for extrusion-based 3D printing of silica-reinforced silicone." Soft Matter 17, no. 15 (2021): 4133–42. http://dx.doi.org/10.1039/d1sm00288k.
Full textDou, Hao, Yunyong Cheng, Wenguang Ye, et al. "Effect of Process Parameters on Tensile Mechanical Properties of 3D Printing Continuous Carbon Fiber-Reinforced PLA Composites." Materials 13, no. 17 (2020): 3850. http://dx.doi.org/10.3390/ma13173850.
Full textJoas, Sebastian, Günter Tovar, Oguz Celik, Christian Bonten, and Alexander Southan. "Extrusion-Based 3D Printing of Poly(ethylene glycol) Diacrylate Hydrogels Containing Positively and Negatively Charged Groups." Gels 4, no. 3 (2018): 69. http://dx.doi.org/10.3390/gels4030069.
Full textZhao, Jingzhou, and Nongyue He. "A mini-review of embedded 3D printing: supporting media and strategies." Journal of Materials Chemistry B 8, no. 46 (2020): 10474–86. http://dx.doi.org/10.1039/d0tb01819h.
Full textPerrot, Arnaud, Damien Rangeard, Venkatesh Naidu Nerella, and Viktor Mechtcherine. "Extrusion of cement-based materials - an overview." RILEM Technical Letters 3 (February 13, 2019): 91–97. http://dx.doi.org/10.21809/rilemtechlett.2018.75.
Full textLi, Zhanzhao, Maryam Hojati, Zhengyu Wu, et al. "Fresh and Hardened Properties of Extrusion-Based 3D-Printed Cementitious Materials: A Review." Sustainability 12, no. 14 (2020): 5628. http://dx.doi.org/10.3390/su12145628.
Full textMeng, Yeqiao, Jinlong Cao, Yue Chen, Yaru Yu, and Lin Ye. "3D printing of a poly(vinyl alcohol)-based nano-composite hydrogel as an artificial cartilage replacement and the improvement mechanism of printing accuracy." Journal of Materials Chemistry B 8, no. 4 (2020): 677–90. http://dx.doi.org/10.1039/c9tb02278c.
Full textLuis, Eric, Houwen Matthew Pan, Swee Leong Sing, Ram Bajpai, Juha Song, and Wai Yee Yeong. "3D Direct Printing of Silicone Meniscus Implant Using a Novel Heat-Cured Extrusion-Based Printer." Polymers 12, no. 5 (2020): 1031. http://dx.doi.org/10.3390/polym12051031.
Full textReich, Matthew J., Aubrey L. Woern, Nagendra G. Tanikella, and Joshua M. Pearce. "Mechanical Properties and Applications of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing." Materials 12, no. 10 (2019): 1642. http://dx.doi.org/10.3390/ma12101642.
Full textLee, Jiwoon, Jesse Walker, Sanjay Natarajan, and Sung Yi. "Prediction of geometric characteristics in polycaprolactone (PCL) scaffolds produced by extrusion-based additive manufacturing technique for tissue engineering." Rapid Prototyping Journal 26, no. 2 (2019): 238–48. http://dx.doi.org/10.1108/rpj-08-2018-0219.
Full textSerex, Ludovic, Arnaud Bertsch, and Philippe Renaud. "Microfluidics: A New Layer of Control for Extrusion-Based 3D Printing." Micromachines 9, no. 2 (2018): 86. http://dx.doi.org/10.3390/mi9020086.
Full textDávila, José Luis, and Marcos Akira d’Ávila. "Rheological evaluation of Laponite/alginate inks for 3D extrusion-based printing." International Journal of Advanced Manufacturing Technology 101, no. 1-4 (2018): 675–86. http://dx.doi.org/10.1007/s00170-018-2876-y.
Full textSun, Jie, Weibiao Zhou, Liangkun Yan, Dejian Huang, and Lien-ya Lin. "Extrusion-based food printing for digitalized food design and nutrition control." Journal of Food Engineering 220 (March 2018): 1–11. http://dx.doi.org/10.1016/j.jfoodeng.2017.02.028.
Full textvan den Heever, Marchant, Frederick Bester, Jacques Kruger, and Gideon van Zijl. "Mechanical characterisation for numerical simulation of extrusion-based 3D concrete printing." Journal of Building Engineering 44 (December 2021): 102944. http://dx.doi.org/10.1016/j.jobe.2021.102944.
Full textRuscitti, A., C. Tapia, and N. M. Rendtorff. "A review on additive manufacturing of ceramic materials based on extrusion processes of clay pastes." Cerâmica 66, no. 380 (2020): 354–66. http://dx.doi.org/10.1590/0366-69132020663802918.
Full text