Academic literature on the topic 'F1 Fo ATP synthase'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'F1 Fo ATP synthase.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "F1 Fo ATP synthase"

1

Keller, David, Seema Singh, Paola Turina, Roderick Capaldi, and Carlos Bustamante. "Structure of ATP synthase by SFM and single-particle image analysis." Proceedings, annual meeting, Electron Microscopy Society of America 53 (August 13, 1995): 722–23. http://dx.doi.org/10.1017/s0424820100139986.

Full text
Abstract:
F1Fo ATP synthases are the proteins responsible for the synthesis of ATP in oxidative phosphorylation, and are present in some form in all aerobic organisms, both prokaryotic and eukaryotic. They use the energy stored in a transmembrane proton gradient (which is generated by other members of the oxidative phosphorylation pathway) to synthesize ATP from ADP and Pi or, working in reverse, to pump protons across the membrane using the energy of ATP hydrolysis. The full protein has two sectors, F1 and Fo. F1 is normally bound to Fo (which is membrane integrated), but is water soluble when dissociated. The F1 sector contains the sites which bind ADP and catalyze its conversion to ATP. The Fo sector contains a channel which allows protons to to cross the membrane, dissipating the transmembrane chemical potential. By an unknown mechanism this translocation of protons through Fo is coupled to the hydrolysis or synthesis of ATP in F1, so that the energy released in hydrolysis of ATP can drive the motion of protons against an electrochemical potential, or the energy of translocating protons can be used to form high energy ADP-Pi bonds.
APA, Harvard, Vancouver, ISO, and other styles
2

Soga, Naoki, Kazuya Kimura, Kazuhiko Kinosita, Masasuke Yoshida, and Toshiharu Suzuki. "Perfect chemomechanical coupling of FoF1-ATP synthase." Proceedings of the National Academy of Sciences 114, no. 19 (April 25, 2017): 4960–65. http://dx.doi.org/10.1073/pnas.1700801114.

Full text
Abstract:
FoF1-ATP synthase (FoF1) couples H+ flow in Fo domain and ATP synthesis/hydrolysis in F1 domain through rotation of the central rotor shaft, and the H+/ATP ratio is crucial to understand the coupling mechanism and energy yield in cells. Although H+/ATP ratio of the perfectly coupling enzyme can be predicted from the copy number of catalytic β subunits and that of H+ binding c subunits as c/β, the actual H+/ATP ratio can vary depending on coupling efficiency. Here, we report actual H+/ATP ratio of thermophilic Bacillus FoF1, whose c/β is 10/3. Proteoliposomes reconstituted with the FoF1 were energized with ΔpH and Δψ by the acid−base transition and by valinomycin-mediated diffusion potential of K+ under various [ATP]/([ADP]⋅[Pi]) conditions, and the initial rate of ATP synthesis/hydrolysis was measured. Analyses of thermodynamically equilibrated states, where net ATP synthesis/hydrolysis is zero, show linear correlation between the chemical potential of ATP synthesis/hydrolysis and the proton motive force, giving the slope of the linear function, that is, H+/ATP ratio, 3.3 ± 0.1. This value agrees well with the c/β ratio. Thus, chemomechanical coupling between Fo and F1 is perfect.
APA, Harvard, Vancouver, ISO, and other styles
3

Guo, Hui, Stephanie A. Bueler, and John L. Rubinstein. "Atomic model for the dimeric FO region of mitochondrial ATP synthase." Science 358, no. 6365 (October 26, 2017): 936–40. http://dx.doi.org/10.1126/science.aao4815.

Full text
Abstract:
Mitochondrial adenosine triphosphate (ATP) synthase produces the majority of ATP in eukaryotic cells, and its dimerization is necessary to create the inner membrane folds, or cristae, characteristic of mitochondria. Proton translocation through the membrane-embedded FO region turns the rotor that drives ATP synthesis in the soluble F1 region. Although crystal structures of the F1 region have illustrated how this rotation leads to ATP synthesis, understanding how proton translocation produces the rotation has been impeded by the lack of an experimental atomic model for the FO region. Using cryo–electron microscopy, we determined the structure of the dimeric FO complex from Saccharomyces cerevisiae at a resolution of 3.6 angstroms. The structure clarifies how the protons travel through the complex, how the complex dimerizes, and how the dimers bend the membrane to produce cristae.
APA, Harvard, Vancouver, ISO, and other styles
4

Kawai, Yoshiko, Maki Kaidoh, Yumiko Yokoyama, and Toshio Ohhashi. "Cell surface F1/Fo ATP synthase contributes to interstitial flow-mediated development of the acidic microenvironment in tumor tissues." American Journal of Physiology-Cell Physiology 305, no. 11 (December 1, 2013): C1139—C1150. http://dx.doi.org/10.1152/ajpcell.00199.2013.

Full text
Abstract:
To address pivotal roles of cell surface F1/FO ATP synthase in the development of acidic microenvironment in tumor tissues, we investigated effects of shear stress stimulation on the cultured human breast cancer cells, MDA-MB-231 and MDA-MB-157, or human melanoma cells, SK-Mel-1. Shear stress stimulation (0.5–5.0 dyn/cm2), the levels of which are similar to those produced by the interstitial flow, induced strength-dependent corelease of ATP and H+ from the cells, which triggered CO2 gas excretion. In contrast, the same level of shear stress stimulation did not induce significant ATP release and CO2 gas excretion from the control human mammary epithelial cells (HMEC). Marked immunocytochemical and mRNA expression of cell surface F1/FO ATP synthase, vacuolar-ATPase (V-ATPase), carbonic anhydrase type IX, and ectonucleoside triphosphate diphosphohydrolase (ENTPDase) 3 were detected in MDA-MB-231 cells, but little or no expression on the HMEC. Pretreatment with cell surface F1/FO ATP synthase inhibitors, but not cell surface V-ATPase inhibitors, caused a significant reduction of the shear stress stimulation-mediated ATP release and CO2 gas excretion from MDA-MB-231 cells. The ENTPDase activity in the shear stress-loaded MDA-MB-231 cell culture medium supernatant increased significantly in a time-dependent manner. In addition, MDA-MB-231 cells displayed strong staining for purinergic 2Y1 (P2Y1) receptors on their surfaces, and the receptors partially colocalized with ENTPDase 3. These findings suggest that cell surface F1/FO ATP synthase, but not V-ATPase, may play key roles in the development of interstitial flow-mediated acidic microenvironment in tumor tissues through the shear stress stimulation-induced ATP and H+ corelease and CO2 gas production.
APA, Harvard, Vancouver, ISO, and other styles
5

Lippe, Giovanna, Gabriele Coluccino, Marco Zancani, Walter Baratta, and Paola Crusiz. "Mitochondrial F-ATP Synthase and Its Transition into an Energy-Dissipating Molecular Machine." Oxidative Medicine and Cellular Longevity 2019 (April 15, 2019): 1–10. http://dx.doi.org/10.1155/2019/8743257.

Full text
Abstract:
The mitochondrial F-ATP synthase is the principal energy-conserving nanomotor of cells that harnesses the proton motive force generated by the respiratory chain to make ATP from ADP and phosphate in a process known as oxidative phosphorylation. In the energy-converting membranes, F-ATP synthase is a multisubunit complex organized into a membrane-extrinsic F1 sector and a membrane-intrinsic FO domain, linked by central and peripheral stalks. Due to its essential role in the cellular metabolism, malfunction of F-ATP synthase has been associated with a variety of pathological conditions, and the enzyme is now considered as a promising drug target for multiple disease conditions and for the regulation of energy metabolism. We discuss structural and functional features of mitochondrial F-ATP synthase as well as several conditions that partially or fully inhibit the coupling between the F1 catalytic activities and the FO proton translocation, thus decreasing the cellular metabolic efficiency and transforming the enzyme into an energy-dissipating structure through molecular mechanisms that still remain to be defined.
APA, Harvard, Vancouver, ISO, and other styles
6

Eisel, Bianca, Felix W. W. Hartrampf, Thomas Meier, and Dirk Trauner. "Reversible optical control of F1 Fo -ATP synthase using photoswitchable inhibitors." FEBS Letters 592, no. 3 (February 2018): 343–55. http://dx.doi.org/10.1002/1873-3468.12958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rodríguez, Eliana, and Magela Laviña. "The Proton Channel Is the Minimal Structure of ATP Synthase Necessary and Sufficient for Microcin H47 Antibiotic Action." Antimicrobial Agents and Chemotherapy 47, no. 1 (January 2003): 181–87. http://dx.doi.org/10.1128/aac.47.1.181-187.2003.

Full text
Abstract:
ABSTRACT It had been previously determined that the presence of FoF1 ATP synthase was required for microcin H47 antibiotic action. In this work, microcin-resistant atp mutants were genetically analyzed. Their mutations, originated by Tn5 insertion, in all cases were found to affect determinants for the Fo portion of ATP synthase. To discern if microcin action required the presence of the entire complex or if the Fo proton channel would suffice, recombinant plasmids carrying different segments of the atp operon were constructed and introduced into an atp deletion strain. The phenotypic analysis of the strains thus obtained clearly indicated that the presence of the Fo proton channel was absolutely required for microcin H47 action, while the F1 catalytic portion was found to be dispensable. Furthermore, when any of the three components of the proton channel was missing, total resistance to the antibiotic ensued. Complementation analysis between atp::Tn5 chromosomal mutations and recombinant atp plasmid constructions further supported the idea that the proton channel would be the minimal structure of the ATP synthase complex needed for microcin H47 antibiotic action.
APA, Harvard, Vancouver, ISO, and other styles
8

Cobley, James, Anna Noble, Rachel Bessell, Matthew Guille, and Holger Husi. "Reversible Thiol Oxidation Inhibits the Mitochondrial ATP Synthase in Xenopus laevis Oocytes." Antioxidants 9, no. 3 (March 5, 2020): 215. http://dx.doi.org/10.3390/antiox9030215.

Full text
Abstract:
Oocytes are postulated to repress the proton pumps (e.g., complex IV) and ATP synthase to safeguard mitochondrial DNA homoplasmy by curtailing superoxide production. Whether the ATP synthase is inhibited is, however, unknown. Here we show that: oligomycin sensitive ATP synthase activity is significantly greater (~170 vs. 20 nmol/min−1/mg−1) in testes compared to oocytes in Xenopus laevis (X. laevis). Since ATP synthase activity is redox regulated, we explored a regulatory role for reversible thiol oxidation. If a protein thiol inhibits the ATP synthase, then constituent subunits must be reversibly oxidised. Catalyst-free trans-cyclooctene 6-methyltetrazine (TCO-Tz) immunocapture coupled to redox affinity blotting reveals several subunits in F1 (e.g., ATP-α-F1) and Fo (e.g., subunit c) are reversibly oxidised. Catalyst-free TCO-Tz Click PEGylation reveals significant (~60%) reversible ATP-α-F1 oxidation at two evolutionary conserved cysteine residues (C244 and C294) in oocytes. TCO-Tz Click PEGylation reveals ~20% of the total thiols in the ATP synthase are substantially oxidised. Chemically reversing thiol oxidation significantly increased oligomycin sensitive ATP synthase activity from ~12 to 100 nmol/min−1/mg−1 in oocytes. We conclude that reversible thiol oxidation inhibits the mitochondrial ATP synthase in X. laevis oocytes.
APA, Harvard, Vancouver, ISO, and other styles
9

Okazaki, Kei-ichi, and Gerhard Hummer. "Elasticity, friction, and pathway of γ-subunit rotation in FoF1-ATP synthase." Proceedings of the National Academy of Sciences 112, no. 34 (August 10, 2015): 10720–25. http://dx.doi.org/10.1073/pnas.1500691112.

Full text
Abstract:
We combine molecular simulations and mechanical modeling to explore the mechanism of energy conversion in the coupled rotary motors of FoF1-ATP synthase. A torsional viscoelastic model with frictional dissipation quantitatively reproduces the dynamics and energetics seen in atomistic molecular dynamics simulations of torque-driven γ-subunit rotation in the F1-ATPase rotary motor. The torsional elastic coefficients determined from the simulations agree with results from independent single-molecule experiments probing different segments of the γ-subunit, which resolves a long-lasting controversy. At steady rotational speeds of ∼1 kHz corresponding to experimental turnover, the calculated frictional dissipation of less than kBT per rotation is consistent with the high thermodynamic efficiency of the fully reversible motor. Without load, the maximum rotational speed during transitions between dwells is reached at ∼1 MHz. Energetic constraints dictate a unique pathway for the coupled rotations of the Fo and F1 rotary motors in ATP synthase, and explain the need for the finer stepping of the F1 motor in the mammalian system, as seen in recent experiments. Compensating for incommensurate eightfold and threefold rotational symmetries in Fo and F1, respectively, a significant fraction of the external mechanical work is transiently stored as elastic energy in the γ-subunit. The general framework developed here should be applicable to other molecular machines.
APA, Harvard, Vancouver, ISO, and other styles
10

Davies, Karen M., and Werner Kühlbrandt. "Structure of the catalytic F1 head of the F1-Fo ATP synthase from Trypanosoma brucei." Proceedings of the National Academy of Sciences 115, no. 13 (March 9, 2018): E2906—E2907. http://dx.doi.org/10.1073/pnas.1801103115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "F1 Fo ATP synthase"

1

Habersetzer, Johan. "Formes supramoléculaires de la F1FO ATP synthase et morphologie mitochondriale : de la levure Saccharomyces cerevisiae aux cellules humaines." Thesis, Bordeaux 2, 2011. http://www.theses.fr/2011BOR21887/document.

Full text
Abstract:
La F1 Fo ATP synthase est un complexe enzymatique localisé au sein de la membrane interne mitochondriale qui utilise le gradient électrochimique en protons formé par la chaîne respiratoire pour synthétiser de l'ATP à partir d'ADP et de Pi. Cette enzyme conservée de la levure S. cerevisiae aux cellules de mammifères s'organise dans les membranes internes mitochondriales sous forme de structures supramoléculaires d'ATP synthases. Chez la levure, il est aujourd'hui parfaitement identifiée que cette organisation nécessite la présence de deux sous-unités accessoires de l'enzyme : les sous-unités e et g.Les travaux présentés dans ce manuscrit visaient à étudier l'implication des sous-unités e et g dans les mécanismes de dimérisation et d'oligomérisation des ATP synthases ainsi que dans la morphogénèse des crêtes mitochondriales chez la levure S. cerevisiae et dans les cellules humaines en culture.Chez la levure, l'étude réalisée nous a permis de déterminer la stœchiométrie des sous-unités e et g, élément indispensable à la modélisation de l'agencement des sous-unités membranaires de l'enzyme dans la membrane interne mitochondriale.Dans les cellules humaines en culture, nous avons pu établir que les sous-unités e et g participent à la stabilité des dimères d'ATP synthases. Cependant l'implication de ces sous-unités dans la stabilité de l'enzyme semble différente des observations effectuées dans les cellules de levure
The F1Fo ATP synthase is an enzymatic complex embedded in the inner mitochondrial membrane which use the electrochemical proton gradient generated by the phosphorylation oxydative pathway to synthesize ATP from ADP and inorganic phosphate. This enzyme is conserved from yeast to mammalian cells and displays supramolecular organization in the inner mitochondrial membrane. In yeast, it is actually well-known that the supramolecular assembly required two accessory subunits : e and g subunits.The present work was realized to understand the involvement of subunits e and g in dimerization and oligomerization of mitochondrial ATP synthases as well as their effect on mitochondrial inner membrane morphogenesis in yeast S. cerevisiae and human cultured cells.In yeast, this study led us to determine subunits e and g stoechiometry, which was cruelly missing to establish a model of the ATP synthases membranous subunits layout in the inner mitochondrial membrane.In human cells, we have demonstrated that subunits e and g are implicated in ATP synthase dimer stabilization. However, their involvement in this stabilization seems to be quietly different of what have been observed in yeast cells
APA, Harvard, Vancouver, ISO, and other styles
2

Konrad, Stephanie. "Interaktion der FO-Statoruntereinheiten a und b der ATP-Synthase aus Escherichia coli." [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=964508427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lauer, Iris. "Untersuchung der Strukturdynamik arbeitender F1-ATPase und ATP-Synthase aus Micrococcus luteus in Einzelschuss-Experimenten mit Synchrotronstrahlung." [S.l. : s.n.], 2001. http://ArchiMeD.uni-mainz.de/pub/2001/0127/diss.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cardouat, Guillaume. "Rôle de l’autophagie et du métabolisme nucléotidique extracellulaire dans la régulation de la voie ecto-F1-ATPase d’endocytose des HDL." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30215.

Full text
Abstract:
L'effet protecteur des HDL sur les pathologies cardio-vasculaires est principalement attribué à leur rôle central dans le Transport Retour du Cholestérol (TRC). Ce processus assure l'efflux du cholestérol excédentaire des cellules périphériques vers le foie, au niveau duquel il est éliminé dans les sécrétions biliaires. Dans ce contexte, notre équipe a identifié à la surface des cellules hépatiques la présence d’un complexe enzymatique, très proche de l’ATP synthase mitochondriale, comme étant un récepteur de haute affinité pour l’apoA-I (protéine majoritaire des HDL). Cette ATP synthase de surface, également appelée ecto-F1-ATPase, joue un rôle clé dans l’endocytose hépatique des HDL. En effet, la liaison de l’apoA-I stimule l’activité ATPasique de l’enzyme, entrainant la production d’ADP extracellulaire puis l’activation spécifique du récepteur nucléotidique P2Y13, aboutissant in fine à l’endocytose des HDL. Ainsi, l’équipe a montré le rôle clé de la voie ecto-F1-ATPase/P2Y13 dans l’endocytose hépatique des HDL et par conséquent dans les effets protecteurs de ces derniers dans l’athérosclérose.Les travaux de thèse présentés ici visent à déterminer les mécanismes de régulation de cette ecto-F1-ATPase. Compte tenu de l’importance de la régulation des taux d’ADP et d’ATP extracellulaires dans l’endocytose des HDL, nous nous sommes intéressés dans un premier temps aux acteurs moléculaires qui pourraient réguler le métabolisme nucléotidique à la surface cellulaire. Nous avons mis en évidence la présence, à la surface des cellules HepG2, de l’adénine nucléotide translocase (ANT), une autre protéine classiquement localisée à la mitochondrie. Nous avons montré que l’ecto-ANT est impliquée dans la régulation des taux des nucléotides adényliques ADP et ATP extracellulaires et que son fonctionnement est lui-même dépendant du taux de ces derniers dans le milieu extracellulaire
The cardioprotective effect of high-density lipoprotein cholesterol (HDL-C) is mostly attributed to their metabolic functions in reverse cholesterol transport (RCT), a process whereby excess cell cholesterol is taken up from peripheral cells and processed in HDL particles, and later delivered to the liver for further metabolism and bile excretion. ATP synthase, classically known to be located in the mitochondrial inner membrane, has been unexpectedly found expressed at the plasma membrane of hepatocytes, as a receptor for apoA-I, playing a role in HDL-cholesterol uptake. On hepatocytes, apoA-I binding to ecto-F1-ATPase stimulates extracellular ATP hydrolysis into ADP, which subsequently activates a P2Y13-mediated HDL endocytosis pathway. The strict dependence of HDL endocytosis on extracellular ADP level led us to study first, whether other plasma membrane proteins than ecto-F1-ATPase could regulate extracellular ADP level. We highlighted the presence on hepatocytes cell surface of Adenine Nucleotide Translocase (ANT), another transmembrane protein of the inner mitochondrial membrane. We showed that ecto-ANT activity could increase or reduce extracellular ADP level, depending on the extracellular ADP/ATP ratio. Furthermore, we demonstrated that pharmacological inhibition of ecto-ANT activity increased extracellular ADP level when ecto-F1-ATPase was activated by apoA-I. This increase in the bioavailability of extracellular ADP accordingly translated into an increase of HDL endocytosis in human hepatocytes. We then sought to explore the molecular mechanisms involved in targeting ecto-F1-ATPase to the plasma membrane. Indeed, F1-ATPase ectopic expression at the plasma membrane has been described on several cell types and has been related to several physiological and pathophysiological processes however, the pathway involved in its transport to the cell surface remains unknown
APA, Harvard, Vancouver, ISO, and other styles
5

Dadi, Prasanna Keerthi. "Inhibition of Escherichia coli ATP Synthase by Polyphenols and Their Derivatives." Digital Commons @ East Tennessee State University, 2010. https://dc.etsu.edu/etd/1704.

Full text
Abstract:
We have studied the inhibitory effect of natural and structurally modified polyphenols on Escherichia coli ATP synthase to test (I) if the beneficial dietary effects of polyphenols are related to their inhibitory actions on ATP synthase, (II) if inhibitory effects of polyphenolic compound could be augmented through structural modifications, and (III) if they can act as antimicrobial agent through their actions on ATP synthesis. X-ray crystal structures of polyphenol binding sites suggested that polyphenols bind at a distinct polyphenol binding pocket, at the interface of α,β,γ-subunits. We found that both natural and modified polyphenols inhibit E. coli ATP synthase to varying degrees and structural modifications resulted in augmented inhibition. Inhibition was reversible in all cases. Both natural and modulated compounds inhibited E. coli cell growth to varying degrees. We conclude that dietary benefits of polyphenols may be in part due to the inhibition of ATP synthase.
APA, Harvard, Vancouver, ISO, and other styles
6

Moffat, Jeffrey C. "Properties of conductance and inhibition of proton channel : M2 from influenza A virus and Fo from Escherichia coli ATP synthase /." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1366.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Moffat, Jeffrey C. "Properties of Conductance and Inhibition of Proton Channels: M2 from Influenza A Virus and Fo from Escherichia coli ATP Synthase." BYU ScholarsArchive, 2006. https://scholarsarchive.byu.edu/etd/479.

Full text
Abstract:
Proton channels are essential for many of the processes of life. The influenza A viral protein M2 is responsible for sensing the conditions necessary for viral RNA release. The proton-translocating FoF1 ATPase (ATP synthase) uses a proton gradient to drive adenosine triphosphate (ATP) synthesis. We have directly measured proton uptake in vesicles containing reconstituted M2 or FO by monitoring external pH after addition of valinomycin to vesicles with 100-fold diluted external [K+]. This proton flux assay was utilized to quantify proton flux through single M2 and Fo channels. Contrary to previous reports, proton uptake by M2 was not significantly altered by acidification of the extravesicular pH. We conclude that pH only weakly affects proton flux through M2 in the pH range of 5.4 - 7.0. Theoretical analysis utilized for such vesicle uptake assays illuminates the appropriate time scale of the initial slope and an important limitation that must be placed on inferences about channel ion selectivity. The rise in pH over 10 seconds after ionophore addition yielded time-averaged single channel conductances of 0.35±0.2 aS and 0.72±0.4 aS at pH 5.4 and 7.0 respectively. Such a low time-average conductance implies that M2 is only conductive 10^-6 to 10^-4 of the time. M2 selectivity for hydrogen over potassium is ~10^7. Fo translocates protons across membranes, converting electrochemical energy to rotational inertia. Previous experiments have been partially confounded by a contaminating channel, CL, which co-purifies with Fo and leaks cations. CL activity is shown to not decrease following deletion of the previously uncharacterized yraM open reading frame of E. coli. Fo purified from a deletion strain lacking yraM is just as active as Fo purified from the wild-type strain. Using Fo from the deletion strain, the single-hit hypothesis of DCCD inhibition of passive proton flux through Fo was examined. A DCCD-induced reduction in ATP synthase activity correlates with a reduction in the total initial slope, the number of functional Fo per µg protein, and the single channel proton flux. At least 2 DCCD per Fo are required to totally inactivate passive proton flux. M2 and Fo have similar single channel conductances but different open probabilities.
APA, Harvard, Vancouver, ISO, and other styles
8

Vantourout, Pierre. "Rôle de l'Ecto-F1-APTase dans la reconnaissance des cellules tumorales par les lymphocytes T Vgamma9/Vdelta2." Toulouse 3, 2009. http://thesesups.ups-tlse.fr/608/.

Full text
Abstract:
Les lymphocytes T Vgamma9/Vdelta2 ont originellement été décrits pour être activés par de petites molécules (phosphoantigènes) isolées à partir de Mycobacterium tuberculosis, agent pathogène responsable de la tuberculose chez l'homme. Ces lymphocytes ont également un large potentiel antitumoral qui pourrait être utilisé pour le développement d'immunothérapies anticancéreuses. Nous nous intéressons aux mécanismes d'activation des lymphocytes T Vgamma9/Vdelta2 par les cellules tumorales et avons récemment identifié l'Ecto-F1-ATPase comme antigène impliqué dans leur reconnaissance. Les travaux effectués au cours de cette thèse mettent en évidence une interaction entre cette molécule et le Complexe Majeur d'Histocompatibilité de classe I, connu pour réguler l'activation de ces lymphocytes. Nous avons également obtenu des données indiquant que l'Ecto-F1-ATPase peut présenter des phosphoantigènes aux lymphocytes T Vgamma9/Vdelta2
Vgamma9/Vdelta2 T cells have originally been described to be activated by small molecules (phosphoantigens) purified from Mycobacterium tuberculosis, the pathogen responsible for the development of tuberculosis in humans. These lymphocytes also have a broad antitumoral potential which could be exploited for the development of anticancer immunotherapy. We are studying the mechanisms by which tumor cells activate Vgamma9/Vdelta2 T cells and have recently identified the Ecto-F1-ATPase as an antigen involved in their recognition. Our results, gathered in this thesis, show an interaction between this complex and Major Histocompatibility Class I molecules, which are known to regulate the activation of these lymphocytes. We also provide experimental data showing that Ecto-F1-ATPase can present phosphoantigens to Vgamma9/Vdelta2 T cells.
APA, Harvard, Vancouver, ISO, and other styles
9

Pelissier, Patrick. "Etude de mutants nucléaires modifiés dans l'expression de la synthèse mitochondriale des sous-unités 8 et 6 du secteur Fo de l'ATP synthase chez Saccharomyces cerevisiae." Bordeaux 2, 1994. http://www.theses.fr/1994BOR28306.

Full text
Abstract:
Ces travaux portent sur l'étude de mutants nucléaires de la levure S. Cerevisiae, modifiés dans la synthèse mitochondriale des sous-unités 8 et 6 de l'ATPsynthase, qui restent respiratoire-compétents. Ces souches sont modifiées dans la régulation de la synthèse de l'ATP par la concentration en phosphate externe. Ceci est dû à la modification de la stoechiométrie relative des sous-unités 8, 6 et 9 dont le résultat est une altération de la perméabilité aux protons de la membrane interne. Une analyse des transcrits mitochondriaux a permis de corréler cette baisse du taux protéique à une modification spécifique du cotranscrit ATP8-ATP6. Une analyse génétique des mutants a mis en évidence deux mutations nucléaires indépendantes toujours associées à une mutation mitochondriale, qui entraîne une sensibilité accrue à la paromomycine, un antibiotique qui augmente le taux d'erreurs au niveau traductionnel mitochondrial. Les séquences nucléotidiques de l'ARN ribosomique 15S et de l'ARN messager VAR1, deux composants des mitoribosomes codés par l'ADN mitochondrial, ont été étudiées : aucune différence n'a pu être mise en évidence entre les souches mutante et sauvage. Les deux gènes nucléaires mutés entraînent un phénotype de cryosensibilité sur substrat respiratoire seulement lorsqu'ils sont présents simultanément. Donc, les deux gènes sauvages ont été recherchés par complémentation fonctionnelle. Deux gènes nucléaires NCA2 et NCA3, impliqués dans l'expression spécifique des sous-unités 8 et 6 de l'ATP synthase, ont été isolés et séquencés. Aucune homologie significative avec des protéines connues n'a été identifiée dans les banques de données. NCA2 et NCA3 sont deux gènes monocopie qui codent respectivement pour des protéines de 70800 et 35400 Da. NCA2 est localisé sur le chromosome 16 et NCA3 sur le chromosome 4. Leur disruption au locus chromosomique ne conduit pas à une incompétence respiratoire
These works concerned the study of respiratory-competent nuclear mutants of the yeast S. Cerevisiae, altered in the mitochondrial synthesis of subunits 8 and 6 of the ATPsynthase. These strains are altered in the regulation of the ATP synthesis by the external phosphate concentration. It was due to a modification of the relative stoichiometry of the mt DNA-encoded 8, 6 and 9 subunits which results in an enhanced proton-leakage through the inner membrane. The mitochondrial transcripts has permitted to correlate the decrease in the subunits 6 and 8 ratio with a specific modification of cotranscript ATP8-ATP6. Genetic analysis of these mutants showed the presence of two unlinked mutations always associated with a mitochondrial mutation, which confered a paromomycin sensitivity, an inhibitor of the mitochondrial protein synthesis. The nucleic sequence of 15S rRNA and VAR1 mRNA, two components of mitoribosomes encoded by mitochondrial DNA, were studied : no difference exist between mutant and wild-type strains. The simultaneous presence of the two mutant nuclear genes induced a cryosensitive phenotype on a nonfermentable carbon source. Then, the two wild-type genes were cloned by functional complementation. Two nuclear genes NCA2 and NCA3, involved in the specific expression of subunits 8 and 6 of the ATPsynthase, were isolated and sequenced. No significant homologies with known proteins were identified in data bases. NCA2 and NCA3 are two single-copy genes which encode for proteins of molecular mass of 70800 and 35400 Da respectively. NCA2 is located on chromosome 16 and NCA3 on chromosome 4. A null mutation of each gene did not let to a respiratory-incompetent phenotype
APA, Harvard, Vancouver, ISO, and other styles
10

Radojkovic, Navarro Claudia. "Implication de la voie de l'ecto-F1-ATPase dans la protection endothéliale dépendante de l'apolipoprotéine A-I." Toulouse 3, 2010. http://thesesups.ups-tlse.fr/800/.

Full text
Abstract:
Récemment, l'ATP synthase mitochondriale a été décrite à la surface de différents types cellulaires où elle est un récepteur de haute affinité pour l'apoA-I, la protéine majoritaire des HDL. L'expression ectopique de l'ATP synthase est impliquée dans diverses fonctions, par exemple, le contrôle de l'angiogenèse sur les cellules endothéliales. Dans ce travail, nous avons évalué le rôle de l'ATP synthase de surface sur la survie et la prolifération des cellules endothéliales humaines induite par l'apoA-I. Nos résultats montrent que l'apoA-I stimule la prolifération et inhibe l'apoptose des HUVEC à travers l'activité hydrolase de l'ATP synthase (ATP -> ADP + Pi) qui activerait les voies PI3K / Akt et MAPK en aval des récepteurs P2Y1 et P2Y12. Ainsi, l'ATP synthase de surface constitue un nouveau mécanisme de protection induit par l'apoA-I sur la paroi vasculaire
Mitochondrial ATP synthase has been recently detected at the surface of different cell types, where it is a high affinity receptor for apoA-I, the major HDL protein. ATP synthase expression is related to different biological effects, for example, angiogenesis control in human endothelial cells. In this work, we have evaluated the implication of the cell surface ATP synthase in the pro-survival and proliferative effects induced by apoA-I on human endothelial cells. Our results show that apoA-I stimulates proliferation and inhibits apoptosis by activating the hydrolase activity of ATP synthase (ATP -> ADP + Pi), which would activate PI3K / Akt and MAPK pathways downstream of P2Y1 and P2Y12 receptors. Thus, the cell surface ATP synthase is a new protector mechanism induced by apoA-I on the vascular wall
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "F1 Fo ATP synthase"

1

I, Hochstein Lawrence, and Ames Research Center, eds. A comparison of an ATPase from the archaebacterium halobacterium saccharovorum with the F1 moiety from the escherichia coli ATP synthase. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "F1 Fo ATP synthase"

1

Papa, S. "The Gating and Coupling Function of Mitochondrial, H+ ATP Synthase. Role of Fo and F1 Subunits." In Molecular Biology of Mitochondrial Transport Systems, 19–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78936-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Robinson, Joseph D. "Oxidative Phosphorylation: F1, F0F1, and ATP Synthase." In Moving Questions, 283–99. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4614-7600-9_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tagawa, Kunio, Tadao Hashimoto, and Yukuo Yoshida. "Interaction of Regulatory Subunits with the F1 Sector of ATP Synthase in Mitochondria." In Molecular Structure, Function, and Assembly of the ATP Synthases, 173–80. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0593-4_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

McCabe, Michael G. P., Renaat Bourgain, and David J. Maguire. "How Proton Translocation across Mitochondrial Inner Membranes Drives the Fo Rotor of ATP Synthase." In Advances in Experimental Medicine and Biology, 133–38. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-6125-2_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Steinemann, Doris, Siegfried Engelbrecht, and Holger Lill. "ATP Synthase of Synechocystis Sp. PCC 6803: Reassembly of F1 from Its Recombinant Subunits." In Photosynthesis: from Light to Biosphere, 2011–14. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-009-0173-5_472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Du, Ziyun, and Zippora Gromet-Elhanan. "Cloning and Expression of the F1 α Subunit from the Rhodospirillum Rubrum FoF1 ATP Synthase." In Photosynthesis: from Light to Biosphere, 1967–70. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-009-0173-5_461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Börsch, M., M. Diez, B. Zimmermann, R. Reuter, and P. Gräber. "Monitoring γ-Subunit Movement in Reconstituted Single EF°F1 ATP Synthase by Fluorescence Resonance Energy Transfer." In Fluorescence Spectroscopy, Imaging and Probes, 197–207. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56067-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hohenstein, Kristi A., and Daniel H. Shain. "Divergence of the F1-ATP synthase complex in the ice worm, Mesenchytraeus solifugus (Annelida, Clitellata, Enchytraeidae)." In Aquatic Oligochaete Biology IX, 51–58. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-5368-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Falk, Gunnar. "Transcription of Genes Coding for Subunits of the FO Membrane Sector of ATP Synthase in Rhodospirillum rubrum." In Current Research in Photosynthesis, 2095–98. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0511-5_481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Altendorf, Karlheinz, Karl Steffens, Erwin Schneider, and Roland Schmid. "Essential Role of Arginine Residues in the Interaction of F0 with F1 in Escherichia Coli ATP Synthase." In Membrane Receptors, Dynamics, and Energetics, 221–35. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5335-5_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography