Journal articles on the topic 'Faa di Bruno formula'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 32 journal articles for your research on the topic 'Faa di Bruno formula.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mishkov, Rumen L. "Generalization of the formula of Faa di Bruno for a composite function with a vector argument." International Journal of Mathematics and Mathematical Sciences 24, no. 7 (2000): 481–91. http://dx.doi.org/10.1155/s0161171200002970.
Full textConstantine, G. M., and T. H. Savits. "A Multivariate Faa di Bruno Formula with Applications." Transactions of the American Mathematical Society 348, no. 2 (1996): 503–20. http://dx.doi.org/10.1090/s0002-9947-96-01501-2.
Full textShabat, Alexey Borisovich, and Magomed Khochalaevich Efendiev. "On applications of Faà-di-Bruno formula." Ufimskii Matematicheskii Zhurnal 9, no. 3 (2017): 131–36. http://dx.doi.org/10.13108/2017-9-3-131.
Full textSarsengeldin, Merey, and Stanislav Kharina. "Method of the integral error functions for the solution of the one- and two-phase Stefan problems and its application." Filomat 31, no. 4 (2017): 1017–29. http://dx.doi.org/10.2298/fil1704017s.
Full textSavits, Thomas H. "Some statistical applications of Faa di Bruno." Journal of Multivariate Analysis 97, no. 10 (November 2006): 2131–40. http://dx.doi.org/10.1016/j.jmva.2006.03.001.
Full textGzyl, Henryk. "Multidimensional extension of Faa di Bruno's formula." Journal of Mathematical Analysis and Applications 116, no. 2 (June 1986): 450–55. http://dx.doi.org/10.1016/s0022-247x(86)80009-9.
Full textMortini, Raymond. "The Fàa di Bruno formula revisited." Elemente der Mathematik 68, no. 1 (2013): 33–38. http://dx.doi.org/10.4171/em/216.
Full textJohnson, Warren P. "The Curious History of Faa di Bruno's Formula." American Mathematical Monthly 109, no. 3 (March 2002): 217. http://dx.doi.org/10.2307/2695352.
Full textAbel, Ulrich. "A new Faà di Bruno type formula." Elemente der Mathematik 70, no. 2 (2015): 49–54. http://dx.doi.org/10.4171/em/274.
Full textWenchang *, Chu. "The Faà di Bruno formula and determinant identities." Linear and Multilinear Algebra 54, no. 1 (January 2006): 1–25. http://dx.doi.org/10.1080/03081080412331281005.
Full textJha, Sumit Kumar. "A formula for the number of non-negative integer solutions of a1x1 + a2x2 + ··· + amxm = n in terms of the partial Bell polynomials." Notes on Number Theory and Discrete Mathematics 27, no. 2 (June 2021): 64–69. http://dx.doi.org/10.7546/nntdm.2021.27.2.64-69.
Full textDawid, A. P., S. Kotz, N. L. Johnson, and C. B. Read. "Encyclopedia of Statistical Sciences, Vol. 3. Faa di Bruno's Formula- Hypothesis Testing." Biometrics 41, no. 1 (March 1985): 341. http://dx.doi.org/10.2307/2530670.
Full textCorcino, Roberto Bagsarsa, Charles Montero, Maribeth Montero, and Jay Ontolan. "The r-Dowling Numbers and Matrices Containing r-Whitney Numbers of the Second Kind and Lah Numbers." European Journal of Pure and Applied Mathematics 12, no. 3 (July 25, 2019): 1122–37. http://dx.doi.org/10.29020/nybg.ejpam.v12i3.3494.
Full textBULTEL, JEAN-PAUL. "A ONE-PARAMETER DEFORMATION OF THE NONCOMMUTATIVE LAGRANGE INVERSION FORMULA." International Journal of Algebra and Computation 21, no. 08 (December 2011): 1395–414. http://dx.doi.org/10.1142/s0218196711006662.
Full textQi, Feng. "Simplifying coefficients in a family of nonlinear ordinary differential equations." Acta et Commentationes Universitatis Tartuensis de Mathematica 22, no. 2 (January 2, 2019): 293–97. http://dx.doi.org/10.12697/acutm.2018.22.24.
Full textQi, Feng. "Simple forms for coefficients in two families of ordinary differential equations." Global Journal of Mathematical Analysis 6, no. 1 (March 30, 2018): 7. http://dx.doi.org/10.14419/gjma.v6i1.9778.
Full textFERGER, Dietmar. "Moment equalities for sums of random variables via integer partitions and Faa di Bruno's formula." TURKISH JOURNAL OF MATHEMATICS 38 (2014): 558–75. http://dx.doi.org/10.3906/mat-1301-6.
Full textWang, Yan, Muhammet Cihat Dağli, Xi-Min Liu, and Feng Qi. "Explicit, Determinantal, and Recurrent Formulas of Generalized Eulerian Polynomials." Axioms 10, no. 1 (March 18, 2021): 37. http://dx.doi.org/10.3390/axioms10010037.
Full textQi, Feng. "Simplifying coefficients in differential equations related to generating functions of reverse Bessel and partially degenerate Bell polynomials." Boletim da Sociedade Paranaense de Matemática 39, no. 4 (January 1, 2021): 73–82. http://dx.doi.org/10.5269/bspm.41758.
Full textXia, Yuxuan, and Zhenyu Cui. "An exact and explicit implied volatility inversion formula." International Journal of Financial Engineering 05, no. 03 (September 2018): 1850032. http://dx.doi.org/10.1142/s2424786318500329.
Full textLeipnik, Roy B., and Charles E. M. Pearce. "The multivariate Faà di Bruno formula and multivariate Taylor expansions with explicit integral remainder term." ANZIAM Journal 48, no. 3 (January 2007): 327–41. http://dx.doi.org/10.1017/s1446181100003527.
Full textQi, Feng, Da-Wei Niu, and Bai-Ni Guo. "Simplification of Coefficients in Differential Equations Associated with Higher Order Frobenius-Euler Numbers." Tatra Mountains Mathematical Publications 72, no. 1 (December 1, 2018): 67–76. http://dx.doi.org/10.2478/tmmp-2018-0022.
Full textHespel, Christiane. "Iterated derivatives of the output of a nonlinear dynamic system and Faà di Bruno formula." Mathematics and Computers in Simulation 42, no. 4-6 (November 1996): 641–57. http://dx.doi.org/10.1016/s0378-4754(96)00040-7.
Full textQi, Feng, Muhammet Cihat Dağlı, and Dongkyu Lim. "Several explicit formulas for (degenerate) Narumi and Cauchy polynomials and numbers." Open Mathematics 19, no. 1 (January 1, 2021): 833–49. http://dx.doi.org/10.1515/math-2021-0079.
Full textFIGUEROA, HÉCTOR, and JOSÉ M. GRACIA-BONDÍA. "COMBINATORIAL HOPF ALGEBRAS IN QUANTUM FIELD THEORY I." Reviews in Mathematical Physics 17, no. 08 (September 2005): 881–976. http://dx.doi.org/10.1142/s0129055x05002467.
Full textSteward, David R., Philippe Le Grand, Igor Janković, and Otto D. L. Strack. "Analytic formulation of Cauchy integrals for boundaries with curvilinear geometry." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464, no. 2089 (October 30, 2007): 223–48. http://dx.doi.org/10.1098/rspa.2007.0138.
Full textSidi, Avram. "A Further Property of Functions in Class B(m): An Application of Bell Polynomials." Journal of Mathematics Research 11, no. 1 (November 27, 2018): 1. http://dx.doi.org/10.5539/jmr.v11n1p1.
Full textSpindler, Karlheinz. "A short proof of the formula of Faà di Bruno." Elemente der Mathematik, 2005, 33–35. http://dx.doi.org/10.4171/em/5.
Full textAlzer, Horst, and Omran Kouba. "Applications of the Formula of Faà di Bruno: Combinatorial Identities and Monotonic Functions." Results in Mathematics 76, no. 4 (July 27, 2021). http://dx.doi.org/10.1007/s00025-021-01448-9.
Full textQi, Feng, and Bai-Ni Guo. "Some properties of the Hermite polynomials." Georgian Mathematical Journal, January 15, 2021. http://dx.doi.org/10.1515/gmj-2020-2088.
Full textDinca, George, and Florin Isaia. "Superposition Operators Between Higher-order Sobolev Spaces and a Multivariate Faà di Bruno Formula: Supercritical Case." Advanced Nonlinear Studies 14, no. 1 (January 1, 2014). http://dx.doi.org/10.1515/ans-2014-0105.
Full textHussainy, Syed Tahir, and Lokesh D. "A study on some infinite server queues in discrete-time." Journal of Computational Mathematica 4, no. 2 (December 28, 2020). http://dx.doi.org/10.26524/cm78.
Full text