Contents
Academic literature on the topic 'Fabrication additive laser par dépôt de poudre'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fabrication additive laser par dépôt de poudre.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Fabrication additive laser par dépôt de poudre"
Blanc, Toinou. "Fabrication additive par dépôt laser direct de TA6V : étude expérimentale dans des régimes de forte productivité, modèles de comportement et recyclage de la poudre." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM047.
Full textAdditive manufacturing, also known as 3D printing, aggregates several processes that allows to build parts by stacking layers of a given material, directly from CAD models, without specific tools. Over the past decade, additive processes have gained in notoriety much more rapidly than their industrial applications gained in profitability.Indeed, these technologies must still mature, especially for metallic applications. This is the challenge of the project FUI-9 FALAFEL, in which this thesis takes place, carried out in partnership with several industrial and academic actors. It aims to accompany the development of the direct laser deposition process (DLD), also known as laser metal deposition (LMD).This consists in projecting and melting metal powder on a substrate in a defined pattern, layer by layer. It allows to obtain large size and low complexity parts with high roughness and a proper productivity, despite being still insufficient for industrialization.The specificity of the present work is to study the DLD process in operating modes that allow to reach high build rates (> 100 cc/h), in application to the titanium alloy TA6V.This work is driven by two research focus. In the first place, we try to improve the understanding and control of the process by establishing the relationships between operating parameters, geometric criteria, melt pool stability, process efficiency and generated microstructure.In a second stage, we focus on the possibility to reuse powders that remain unmelted after deposition. Up to 3 levels of powder recycling are studied, without dilution with new powder. We then carried out tests to check that the mechanical properties were in accordance with the aeronautical requirements
Marion, Guillaume. "Modélisation de procédés de fabrication additive de pièces aéronautiques et spatiales en Ti-6AI-4V par dépôt et fusion sélective d'un lit de poudre par laser : Approche thermique, métallurgique et mécanique." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEM055.
Full textAdditive manufacturing processes allow to build finished industrial parts with very complex geometry, while reducing development time and costs compared to conventional manufacturing processes. The main principle of all these processes is to build components directly from a CAD file defining its geometry without requiring any mold nor specific tools.This study is part of the FALAFEL research project focused on additive manufacturing processes by laser and electron beams. It is composed of academic research laboratories and industrial partners from Aeronautics and Laser Processes industries. The main goal of this project is to implement, improve and validate additive manufacturing processes regarding the production of metallic components for Aeronautics. Studies are conducted under industrial conditions.The aim of our thesis is to provide a numerical model to obtain, within a reasonable time, information about the mechanical and metallurgical properties of industrial components made out of titanium Ti-6Al-4V. It is aimed at two additive manufacturing processes: the Direct Metal Deposition (DMD) and the Selective laser melting (SLM)
Josse, François. "Apport à la compréhension et à la simulation numérique du procédé Laser Metal Deposition – poudre." Thesis, Ecully, Ecole centrale de Lyon, 2022. http://www.theses.fr/2022ECDL0025.
Full textAdditive manufacturing allows a greater freedom of geometry thanks to the layer-by-layer construction of the parts from a CAD model. Reparation, prototyping and functionalisation are the main applications of the additive processes. Therefore, many challenges are still to overcome in order to master those processes. One of the main challenges is the dimensions of the parts built by metallic additive manufacturing.The Direct Energy Deposition technologies, specifically powder fed Laser Metal Deposition, are a solution to build parts without neither dimension nor geometric limitations. Experimental and numerical work has been conducted in the objective of improving the understanding of this process. This work focus on mastering high mechanical performances as well as predict bead geometry thanks to the numerical simulation.Three martensitic stainless steel showing high mechanical performances (YS> 1000MPa, UTS> 1200 MPa et E%>12%) are obtained. A specific attention has been paid to the microstructure and its stability during the build-up the volumes. The effect of the heat treatments on the mechanical properties was investigated to improve the performances.A new numerical strategy simulating the freeform of the melt pool surface has been developped. The strategy allow the modelisation of the bead’s geometry from process parameters without any thermo-fluid calculation. The model is able to reproduce the bead’s thickness evolution during a wall build-up in short computation time
Schneider-Maunoury, Catherine. "Application de l’injection différentielle au procédé de fabrication additive DED-CLAD® pour la réalisation d’alliages de titane à gradients de compositions chimiques." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0260/document.
Full textSince 1984, the Functionally Graded Material (FGM) allow to create a thermal barrier and to reduce the strong discontinuities of properties between two materials of different composition. These multimaterials,whose consist of an intentional variation in the chemical composition and, consequently, modify the microstructural, chemical, mechanical and thermal properties, lead to a smooth distribution of the thermal stress. The in-situ development of these custom-made alloys is made possible by the use of additive manufacturing processes such as the DED-CLAD® powder deposition process. These processes have grown substantially since the 1980s and are optimal for the manufacture of FGM. During this industrial thesis, technical developments have been carried out to adapt the DED-CLAD® process and to allow the manufacturing of FGM. Thanks to two industrial collaborations, a full study was carried out on titanium-molybdenum and titanium-niobium alloys. These alloys make it possible, in the first case, to produce parts resistant to strong thermal stress (space sector), and in the second case to combine mechanical properties and biocompatibility (biomedical sector). The originality of this thesis rests on the study of a complete gradient, that is the addition in alloy element varied from 0% to 100%. In fact, studies reported in the literature do not mention titanium-refractory material for high levels of refractory element. Microstructural (XRD, crystallographic analysis by EBSD technique), chemical (EDS) and mechanical (microhardness, tensile test and instrumented indentation) analyses revealed an evolution of the properties along the chemical gradient. The mechanical characterization of the sample by instrumented indentation has also proved particularly relevant in the case of these multi-materials
Nain, Vaibhav. "Efficient thermomechanical modeling of large parts fabricated by Directed Energy Deposition Additive Manufacturing processes." Thesis, Lorient, 2022. http://www.theses.fr/2022LORIS630.
Full textDirected Energy Deposition (DED) Additive Manufacturing technology offers a unique possibility of fabricating large-scale complex-shape parts. However, process-induced deformation in the fabricated part is still a big obstacle in successfully fabricating large-scale parts. Therefore, multiple numerical models have been developed to understand the accumulation of induced deformation in the fabricated part. The first model predicts the thermo-elastoplastic behaviour that captures the laser movement. The laser-material interaction and metal deposition are modeled by employing a double ellipsoid heat source and the Quiet/Active material activation method respectively. The model considers isotropic non-linear material hardening to represent actual metal behaviour. It also employs an instantaneous stress relaxation model to simulate the effects of physical phenomena like annealing, solid-state phase transformation, and melting. Using this model as a reference case, an efficient model is developed with an objective to reduce the computation time and make it feasible to simulate large-part. The model employs an Elongated Ellipsoid heat source that averages the heat source over the laser path which reduces the computational burden drastically. However, averaging over large laser path results in inaccurate results. Therefore, new parameters are developed that identify the best compromise between computation time reduction and accuracy. Both models are validated with experimental data obtained from several experiments with different process parameters. Finally, other Multi- scale methods such as the Layer-by-layer method and Inherent Strain-based methods are implemented and explored
Pouzet, Sébastien. "Fabrication additive de composites à matrice titane par fusion laser de poudre projetée." Thesis, Paris, ENSAM, 2015. http://www.theses.fr/2015ENAM0051/document.
Full textTitanium matrix composites are attractive materials for aeronautical applications, mainly because of their superior mechanical resistance at elevated temperature, combined with a low density. The critical machinability of such composites makes additive manufacturing processes particularly adapted for building complex 3D shapes. This study has been focused on the Direct Metal Deposition (DMD) of Metal matrix composites. In a first step, various powders and powder blends have been carried out in order to facilitate the DMD process and to obtain homogeneous microstructures. Following this, Ti-6Al-4V / B4C powder blends, allowing to obtain TiB + TiC particles distributed in the Ti matrix were more specifically considered. Metallurgical mechanisms involved in the formation of microstructures were identified prior to an investigation on mechanical properties at ambient and elevated temperature for various DMD process conditions and particle concentrations. Among the most interesting results of this study, the influence of a high carbon content solubilized in the Ti-matrix was considered as a dominant factor to explain the evolution of mechanical properties with increased amounts of reinforcements
Cherri, Alexis. "Poudres PEKK pour la fabrication additive par fusion laser." Thesis, Paris, HESAM, 2022. http://www.theses.fr/2022HESAE031.
Full textNowadays, the need to develop ever more innovative and efficient materials puts constant pressure on a large number of industrial sectors. Among them, aeronautics, aerospace, transport and energy production sectors seek to lighten the structure of their equipment in order to reduce energy consumption and minimize their environmental footprint. This reduction generally results in the conversion of metallic and dense materials towards plastic and lighter materials. The specificities of these industrial sectors, as well as the conditions of temperature, pressure, and accelerated aging to which some of their equipment are constrained, impose very precise specifications. The selective laser sintering process (also called SLS), recently implemented for the manufacture of thermoplastic parts, is of great interest for these different sectors of activity in which custom-made parts with complex geometry are often required. This process consists of the layer-by-layer manufacturing of parts by selective melting of powder by a laser beam. PEKK, a high performance semi-crystalline thermoplastic copolymer, validates many of the criteria for use in SLS manufacturing. However, the still limited knowledge that we have of this polymer, as well as its copolymer-like structure, still require substantial research work to this day. The aim of this work was to deepen our knowledge of the properties of crystallization and melting of a commercially available PEKK grade designed for use in SLS. These properties are of key importance for the successful implementation of the SLS process. A second objective was to develop a new grade of PEKK copolymers with a regular structure. In order to better understand the crystallization properties of our polymers, a model was used and a combination of SAXS / WAXS, DSC and rheological studies is carried out. The way of using in SLS the new grade of PEKK, hitherto very little explored, was also studied. We demonstrated that the copolymer with the regular chain structure exhibits a much simpler crystallization mechanism and a higher crystallization enthalpy which may be a advantage for use in SLS
François, Mathieu. "Conception pour la fabrication additive, par fusion laser sur lit de poudre, de composants hyperfrequences." Thesis, Paris, HESAM, 2020. http://www.theses.fr/2020HESAE008.
Full textFor many years, passive microwave waveguide components have been used in communication systems, particularly for antenna feed chains. This kind of radiofrequency equipment is already widely operational in various fields such as satellite communications, radars, space observations, etc. Because of their low loss as well as their high energy management capacity. However, the emergence of new technologies and the significant degree of competition that occurs within the defense market, customers are increasingly calling for lower-cost products, shorter lead times, with requirements equally high.Over the past years, several institutions and industries have become more and more interested in additive manufacturing processes for passive waveguide components. Without any need for raw material or dedicated tools, additive technologies bring some new design perspectives. In particular, the addition of material layer by layer promotes the manufacture of monolithic parts, which would contribute to lighten the weight of antennas and save time and costs. On the other hand, it offers additional degrees of freedom during the design stage, encouraging the development of complex and innovative architectures, resulting in increased performance, which would be unachievable by conventional techniques. As such, additive manufacturing has been identified as being able to play a crucial role in the development of this type of part.However, like any other manufacturing process, additive processes involve several physical phenomena and so have their own manufacturing specificities and constraints to consider during the design phase to benefit fully from all the potential of additive manufacturing. Combined with the microwave requirements, the designer must then be able to identify the correlation between design, process and electromagnetic to guarantee a quality part conforming to the specifications.The objective of this study is twofold. The first one consists of identifying the specificities of the laser beam melting process with a major influence on electromagnetic properties, in order to be able to pay special attention during the design phase. The second concerns the development of a method that incorporates the constraints and opportunities of additive manufacturing while meeting the objectives arising from the microwave specifications
Andreau, Olivier. "Nocivité en fatigue et contrôle de défauts produits par fabrication additive." Thesis, Paris, ENSAM, 2019. http://www.theses.fr/2019ENAM0037.
Full textThe Selective Laser Melting Process (SLM) consists in manufacturing metallic parts by melting successive powders layers. This new additive manufacturing method allows building new complex geometries that can help lighten structures, such as lattice parts. However, the mechanical properties of additive manufacturing parts are still an industrial concern, especially for high cycle fatigue behavior. Such parts can indeed comprise surface and internal pores that can be deleterious to mechanical properties. The goal of this thesis is to characterize the influence of porous defects on the high cycle fatigue fatigue performance of 316L SLM parts. Firstly, some key SLM parameters that can control the porosity and the microstructure of fabricated parts were quantified. A distinction between the pore types was proposed, and their characteristics were related to the volumetric energy density delivered by the laser. The microstructure was also investigated, with a focus on crystallographic orientation and grain size, depending on the melt pool overlap and morphology. Secondly, using X-ray tomography, a parametric research was conducted to generate and characterize optimized fatigue samples with a minimal amount of pores. Such samples were used as a reference for other fatigue samples containing various randomly distributed pore populations, with similar microstructures. The relative influence of different internal pore populations on the high cycle fatigue endurance was quantified, for similar surface pore population. Finally, deterministic pores with controlled morphology, position and various dimensions were generated after a detailed parametric optimization. A specific internal crack initiation threshold was evidenced for deterministic defects, which was supposed to be linked to the local gaseous environment during crack initiation and propagation
Durand, Pierre-Yves. "Modélisations multiphysiques à deux échelles du procédé de fabrication additive par fusion laser de lit de poudre." Thesis, Nantes, 2017. http://www.theses.fr/2017NANT4012.
Full textRegardless the industry, additive manufacturing processes for metallic materials have a great industrial potential, especially to product high added value parts. One of the main users of these processes, and more specifically the Selective Laser Melting (SLM), is the tooling industry for plastics processing. It make possible to reduce production costs and manufacturing times while increasing the complexity of manufactured parts. However, in order to improve the quality of the latter and ensure their certifications, a better insight into the related physical phenomena undergone by the material during the process is still needed. In this PhD thesis, the SLM process modeling is multiphysic and concerns two different scales. The first modeling scale uses the Volume Of Fluid method to model the powder bed melting and its ensuing solidification. The numerical powder bed is computed thanks to a specific generator enabling to take account for the experimental granulometry. Once some simplifying assumptions on the physical phenomena stated, the surface tension has been implemented requiring the "heights functions" method use. The second modeling scale corresponds to the building of laser tracks series through the finite element method. The thermomechanical approach uses the element birth method in order to meet as far as possible the experimental conditions. Following its assessment through experiment/simulation face off, model have enable to predict the temperature field and the melted zone width as well as the keyhole formation
Conference papers on the topic "Fabrication additive laser par dépôt de poudre"
Catros, S. "A quoi servent les Bio-Imprimantes 3D ?" In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601012.
Full textMichau, Alexandre, Fernando Lomello, Wilfried Pacquentin, and Pascal Aubry. "Traitement de surface par laser, nouveaux procédés de dépôt des couches minces, fabrication additive." In Etats de surface dans les réacteurs nucléaires : enjeux, avancées et perspectives. Les Ulis, France: EDP Sciences, 2017. http://dx.doi.org/10.1051/jtsfen/2017eta09.
Full text