Academic literature on the topic 'Fabrication additive métallique DED'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fabrication additive métallique DED.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fabrication additive métallique DED"

1

Park, Seong-Hyun, Kiyoon Yi, Peipei Liu, Gwanghwo Choi, Kyung-Young Jhang, and Hoon Sohn. "In situ and layer-by-layer grain size estimation in additively manufactured metal components using femtosecond laser ultrasonics." Journal of Laser Applications 35, no. 2 (2023): 022002. http://dx.doi.org/10.2351/7.0000938.

Full text
Abstract:
Directed energy deposition (DED) is an additive manufacturing technique wherein a focused thermal energy source and a coaxial powder delivery system are combined for the fabrication of metallic parts. Although rapid progress has been made in DED, the amount of research performed for in situ quality monitoring during fabrication is limited. Grain size monitoring during DED is particularly important because the grain size is directly related to the mechanical strength and stiffness of the final products. In this study, a layer-by-layer grain size estimation technique using femtosecond laser ultr
APA, Harvard, Vancouver, ISO, and other styles
2

Millon, Célia, Arnaud Vanhoye, and Anne-Françoise Obaton. "Ultrasons laser pour la détection de défauts sur pièces de fabrication additive métallique." Photoniques, no. 94 (November 2018): 34–37. http://dx.doi.org/10.1051/photon/20189434.

Full text
Abstract:
La fabrication additive (FA), notamment la FA de pièces métalliques, connait un essor dans les secteurs de pointe comme l’aéronautique ou le médical de par les possibilités accrues en termes de complexité géométrique, de fonctionnalités ou encore de personnalisation des pièces. Cependant, les poudres métalliques et la fusion laser mis en oeuvre dans certains procédés lors de la fabrication conduisent parfois à des défauts, comme par exemple des manques de fusion. Pour réduire les coûts de production engendrés par des pièces finies mais non conformes, la fabrication de ces pièces appelle à déve
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Lequn, Xiling Yao, Youxiang Chew, Fei Weng, Seung Ki Moon, and Guijun Bi. "Data-Driven Adaptive Control for Laser-Based Additive Manufacturing with Automatic Controller Tuning." Applied Sciences 10, no. 22 (2020): 7967. http://dx.doi.org/10.3390/app10227967.

Full text
Abstract:
Closed-loop control is desirable in direct energy deposition (DED) to stabilize the process and improve the fabrication quality. Most existing DED controllers require system identifications by experiments to obtain plant models or layer-dependent adaptive control rules, and such processes are cumbersome and time-consuming. This paper proposes a novel data-driven adaptive control strategy to adjust laser voltage with the melt pool size feedback. A multitasking controller architecture is developed to incorporate an autotuning unit that optimizes controller parameters based on the DED process dat
APA, Harvard, Vancouver, ISO, and other styles
4

Saboori, Abdollah, Alberta Aversa, Giulio Marchese, Sara Biamino, Mariangela Lombardi, and Paolo Fino. "Microstructure and Mechanical Properties of AISI 316L Produced by Directed Energy Deposition-Based Additive Manufacturing: A Review." Applied Sciences 10, no. 9 (2020): 3310. http://dx.doi.org/10.3390/app10093310.

Full text
Abstract:
Directed energy deposition (DED) as a metal additive manufacturing technology can be used to produce or repair complex shape parts in a layer-wise process using powder or wire. Thanks to its advantages in the fabrication of net-shape and functionally graded components, DED could attract significant interest in the production of high-value parts for different engineering applications. Nevertheless, the industrialization of this technology remains challenging, mainly because of the lack of knowledge regarding the microstructure and mechanical characteristics of as-built parts, as well as the tru
APA, Harvard, Vancouver, ISO, and other styles
5

Zakerin, Nika, Khashayar Morshed-Behbahani, Donald Paul Bishop, and Ali Nasiri. "Review of Tribological and Wear Behavior of Alloys Fabricated via Directed Energy Deposition Additive Manufacturing." Journal of Manufacturing and Materials Processing 9, no. 6 (2025): 194. https://doi.org/10.3390/jmmp9060194.

Full text
Abstract:
Additive manufacturing (AM) is a rapidly evolving technology that enables the fabrication of complex 3D components across a wide range of materials and applications. Among various AM techniques, direct energy deposition (DED) has gained significant attention for its ability to produce metal and alloy components with moderate geometric complexity while maintaining a high deposition rate. This makes DED particularly suitable for real-world applications, including in-situ repair and restoration of metallic parts. Due to the nature of the DED process, components undergo extreme heating and cooling
APA, Harvard, Vancouver, ISO, and other styles
6

Sidun, Muhammad Irfan Syahmi, and Ismayuzri Ishak. "Bead Characterization for Wire Based Laser Directed Energy Deposition Fabrication Process." Jurnal Teknologi 13, no. 2 (2023): 58–64. http://dx.doi.org/10.35134/jitekin.v13i2.98.

Full text
Abstract:
A three-dimensional, solid object of almost any shape or design can be created using metal additive manufacturing, often known as metal 3D printing. One of the most popular materials utilized in additive manufacturing is metal. The far more complicated procedure of directed energy deposition (DED) is frequently employed to upgrade or repair existing components. DED fabrication process will be able to construct a 3D metal object with consideration of the weld bead characteristics. Without knowing the weld bead characteristics, the mechanical integrity will not hold as the bead size is not suita
APA, Harvard, Vancouver, ISO, and other styles
7

Jedlan, Štěpán, Martin Ševeček, Antonín Prantl, Josef Hodek, Pavel Podaný, and Michal Brázda. "Effect of heat-treatment on material properties of L-DED printed austenistic alloy 08CH18N10T for nuclear reactor applications." Acta Polytechnica CTU Proceedings 44 (December 1, 2023): 1–4. http://dx.doi.org/10.14311/app.2023.44.0001.

Full text
Abstract:
This paper deals with the evaluation of material properties of the additively manufactured austenistic alloy 08CH18N10T, which is widely used in the Czech Republic nuclear power plants Temelín and Dukovany and other VVER reactors around the world. For purposes of utilization of additive manufacturing technologies for nuclear core components fabrication, two sets of samples were prepared from horizontally and vertically L-DED printed blocks from 08CH18N10T material. Experiments such as microstructure analysis, porosity and Vickers hardness were then performed on L-DED printed and heat-treated 0
APA, Harvard, Vancouver, ISO, and other styles
8

Ostolaza, Marta, Jon Iñaki Arrizubieta, Aitzol Lamikiz, Soraya Plaza, and Naiara Ortega. "Latest Developments to Manufacture Metal Matrix Composites and Functionally Graded Materials through AM: A State-of-the-Art Review." Materials 16, no. 4 (2023): 1746. http://dx.doi.org/10.3390/ma16041746.

Full text
Abstract:
Multi-material structure fabrication has the potential to address some critical challenges in today’s industrial paradigm. While conventional manufacturing processes cannot deliver multi-material structures in a single operation, additive manufacturing (AM) has come up as an appealing alternative. In particular, laser-directed energy deposition (L-DED) is preferred for multi-material AM. The most relevant applications envisioned for multi-material L-DED are alloy design, metal matrix composites (MMC), and functionally graded materials (FGM). Nonetheless, there are still some issues that need t
APA, Harvard, Vancouver, ISO, and other styles
9

He, Wentao, Lida Zhu, Can Liu, and Hongxiao Jiang. "Metal Additive Manufacturing and Molten Pool Dynamic Characterization Monitoring: Advances in Machine Learning for Directed Energy Deposition." Metals 15, no. 2 (2025): 106. https://doi.org/10.3390/met15020106.

Full text
Abstract:
Directed energy deposition (DED) has progressively emerged as a highly promising technology for the rapid, cost-effective, and high-performance fabrication of hard-to-process metal components with shorter production cycles. Recognized as one of the most widely utilized metal additive manufacturing (AM) techniques, DED has found extensive applications in critical industrial sectors such as aerospace and aviation. Despite its potential, challenges such as inconsistent part quality and low process repeatability continue to restrict its broader adoption. The core issue underlying these challenges
APA, Harvard, Vancouver, ISO, and other styles
10

Santaolaya, Javier, Jorge Sogorb, Ignacio González-Barba, Antonio Periñán, and Fernando Lasagni. "Development and Optimization of Processing Parameters of 316L Stainless Steel and Inconel 718 by Wire Feed Direct Energy Deposition/Laser Beam (W-DED/LB)." Key Engineering Materials 958 (October 5, 2023): 21–29. http://dx.doi.org/10.4028/p-3mi1yv.

Full text
Abstract:
Within the technologies that make up Additive Manufacturing (AM), one of the ones that have taken the greatest prominence in recent times is DED (Direct Energy Deposition), particularly that of wire feedstock. The W-DED/LB technique has some benefits compared to other AM methods, such as the fabrication of relatively larger parts, repair capabilities of the damaged areas of a component, cladding of different materials on existing parts, and reduced material waste.This study describes the optimisation of processing parameters for the manufacturing stainless steel (SS316L) and Inconel 718 alloys
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Fabrication additive métallique DED"

1

Mvolo, Evina Alegue Ela. "Solutions d'optimisation pour la fabrication additive robotisée multi-procédés DED de pièces de grandes dimensions métalliques." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2024. http://www.theses.fr/2024UCFA0038.

Full text
Abstract:
La Fabrication Additive Métallique (FAM) des pièces de grandes dimensions s'oriente vers l'utilisation croissante des systèmes robotisés multi-procédés et cinématiquement multi-redondants pour palier le problème de limitation de l'espace de travail des machines traditionnelles. Intégrer les robots dans ce contexte nécessite une approche spécifique qui tient compte à la fois des contraintes propres aux robots et des exigences relatives aux procédés de FAM. Ces travaux de thèse implémentent des solutions d'optimisation incluant les contraintes robotiques et des procédés, appliquées à une cellule
APA, Harvard, Vancouver, ISO, and other styles
2

Doutre, Pierre-Thomas. "Comment intégrer et faire émerger des structures architecturées dans l'optimisation de pièces pour la fabrication additive par faisceaux d’électrons." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI039.

Full text
Abstract:
Grâce à la fabrication additive, il est aujourd'hui possible de fabriquer de nouvelles géométries. Les perspectives offertes par les moyens de fabrications conventionnelles et additives sont très différentes. Des propositions de design très contraintes peuvent devenir beaucoup plus libres avec la fabrication additive. Cette liberté qu'elle offre fait émerger une multitude de possibilités. Dans ce manuscrit, nous nous sommes focalisés sur un type particulier de structures (les octetruss) ainsi que sur les moyens de fabrication EBM (Electron Beam Melting) de la société ARCAM. Les travaux présent
APA, Harvard, Vancouver, ISO, and other styles
3

Agouzoul, Asmaâ. "Nouvelles méthodes numériques pour la simulation de l’impression 3D métallique." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0004.

Full text
Abstract:
Le procédé SLM offre de nouvelles perspectives en termes de conception de pièces. Cependant, les phénomènes thermo-mécaniques liés au procédé sont responsables des contraintes résiduelles et de la distorsion de la pièce fabriquée. La simulation numérique est un outil intéressant pour mieux cerner les phénomènes physiques à l’œuvre et leur impact sur la qualité de la pièce. Dans cette thèse, nous proposons différentes approches qui permettent de réaliser les simulations à moindre coût, en utilisant des algorithmes de réduction de modèles. Les résultats sont comparés à ceux obtenus par la méthod
APA, Harvard, Vancouver, ISO, and other styles
4

Carassus, Hugo. "Comportement dynamique des matériaux cellulaires issus de la fabrication additive pour l'allègement structural et la sécurité au crash et à l'impact." Electronic Thesis or Diss., Valenciennes, Université Polytechnique Hauts-de-France, 2023. http://www.theses.fr/2023UPHF0003.

Full text
Abstract:
L'essor de la fabrication additive depuis la fin du XXème siècle permet d'envisager la conception de nouveaux matériaux cellulaires architecturés combinant légèreté et grande capacité d'absorption d'énergie. Leur utilisation dans les secteurs du transport terrestre ou aérien revêt alors un intérêt certain pour contribuer conjointement à l'allégement structural et à la sécurité en cas de crash et/ou d'impacts.Les objectifs des travaux de recherche sont d'étudier et de modéliser le comportement mécanique, sous chargements uniaxiaux en dynamique rapide, de cette nouvelle catégorie de matériaux ce
APA, Harvard, Vancouver, ISO, and other styles
5

Ratsimba, Alice. "Élaboration d’objets en cuivre par fabrication additive par extrusion de matière : Etude de la faisabilité : cas de pâtes chargées utilisant des hydrogels de polysaccarides comme systèmes liants." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0054.

Full text
Abstract:
Parmi les sept méthodes de fabrication additive appliquées aux métaux, l'extrusion de matière (Extrusion Additive Manufacturing, EAM) apparait comme une technique prometteuse pour la production de d’objets en cuivre. Ce procédé de mise en forme indirect consiste à convoyer un matériau et à le pousser à travers un orifice afin de former des cordons de matière. Ce processus de mise en forme indirecte implique le convoyage d'un matériau à travers un orifice pour former des cordons de matière. Les objets tridimensionnels sont construits par empilement de couches successives à partir d'un mélange d
APA, Harvard, Vancouver, ISO, and other styles
6

Coffigniez, Marion. "Additive manufacturing of 3D architectured metallic biomaterials by robocasting." Thesis, Lyon, 2021. http://www.theses.fr/2021LYSEI007.

Full text
Abstract:
Au-delà de l'aspect de personnalisation qu'elle peut apporter au domaine médical, la fabrication additive donne aussi accès à l'élaboration de structures cellulaires. Ces structures, de porosité maîtrisée, permettent à la fois de moduler les propriétés mécaniques de l'objet, mais aussi de favoriser l'invasion cellulaire nécessaire en ingénierie tissulaire. Parmi les métaux communément utilisés en chirurgie orthopédique, les alliages de titane sont ceux présentant la rigidité la moins éloignée de celle de l'os. Cette étude porte donc sur l'élaboration de structures en Ti6-Al-4V, mais aussi en m
APA, Harvard, Vancouver, ISO, and other styles
7

Bréhier, Michèle. "Synthèse de stratégies de fabrication pour la maîtrise de la microstructure des pièces produites par dépôt de matière sous énergie concentrée." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST151.

Full text
Abstract:
La fabrication additive métallique est un procédé qui construit des objets couche par couche en produisant le matériau en même temps que l'objet. Un défi industriel majeur est d'obtenir des propriétés optimales du matériau en fonction des sollicitations mécaniques. Or, les propriétés mécaniques dépendent de la microstructure.Dans la littérature, différents leviers d'action permettant de modifier la microstructure en fabrication additive ont été identifiés. Cependant, certains d'entre eux sont difficiles à mettre en œuvre pour un couple machine-matériau donné, nécessitent l'ajout d'équipements
APA, Harvard, Vancouver, ISO, and other styles
8

Loubère, Emmanuel. "Procédés laser appliqués aux matériaux composites cuivre/diamant." Electronic Thesis or Diss., Bordeaux, 2025. http://www.theses.fr/2025BORD0008.

Full text
Abstract:
Avec la miniaturisation croissante des composants électroniques, une quantité plus importante de chaleur doit être évacuée des dispositifs électroniques. Sans une dissipation thermique optimale, la surchauffe des composants risque de réduire considérablement leur durée de vie et leur fiabilité. Pour répondre à ce besoin, de nouveaux matériaux de gestion thermique, dotés de propriétés thermiques adaptées et mécaniquement résistants, doivent être développés.Les matériaux composites à matrice cuivre (Cu) renforcée par des particules de diamant (D) ont le potentiel d’être utilisés comme matériaux
APA, Harvard, Vancouver, ISO, and other styles
9

Chabot, Alexia. "Méthodologie de monitoring multiphysique des procédés DED : développement par une démarche expérimentale." Thesis, Ecole centrale de Nantes, 2020. http://www.theses.fr/2020ECDN0022.

Full text
Abstract:
La Fabrication Additive métallique apporte de nouvelles possibilités de fabrication et de liberté de conception des pièces fonctionnelles métalliques par rapport aux procédés conventionnels. En particulier, les technologies Direct Energy Deposition (DED), notamment les procédés Laser Metal Deposition (LMD) et Wire-Arc Additive Manufacturing (WAAM) fusionnent directement la matière et la déposent couche par couche pour réaliser une pièce. Actuellement, ces procédés sont majoritairement mis en œuvre en boucle ouverte. Ainsi, l’obtention d’une pièce conforme aux exigences du cahier des charges ré
APA, Harvard, Vancouver, ISO, and other styles
10

Radel, Simon. "Implémentation d'un contrôle en ligne pour système de fabrication additive métallique de structures treillis par soudage à l'arc." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS078/document.

Full text
Abstract:
La technologie de fabrication additive métal fil permet la fabrication de structures filaires complexes en 3 dimensions. Ce système se base sur l'utilisation d'un procédé de soudage qui va permettre le dépôt de la matière. Ce dernier est embarqué sur un bras robotique qui permettra de déplacer la torche de soudage aux positions désirées. Pour fabriquer de grandes structures filaires, le dépôt s'effectue point par point. L'utilisation d'un procédé de soudage induit des fluctuations sur le dépôt. Pour être adaptable facilement, deux aspects doivent être pris en compte. Premièrement, une instrume
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Fabrication additive métallique DED"

1

Dawir, Eric. Conception d'une Chambre de Construction Réduite Pour une Machine de Fabrication Additive Métallique de Type Electron Beam Melting. GRIN Verlag GmbH, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Fabrication additive métallique DED"

1

PEYRE, Patrice. "Les procédés de fabrication additive métallique." In La fabrication additive des alliages métalliques 1. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9054.ch1.

Full text
Abstract:
Ce chapitre présente les quatre grands procédés de fabrication additive métallique actuels (L-PBF, DED-LMD, E-PBF, DED-WAAM) et trois procédés alternatifs en cours de maturation. Y sont décrits: les principes de base et les paramètres clés de chaque procédé, les types d’application visés, et certains éléments sur les propriétés des matériaux fabriqués.
APA, Harvard, Vancouver, ISO, and other styles
2

PEYRE, Patrice. "La physique des procédés de fabrication additive métallique." In La fabrication additive des alliages métalliques 1. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9054.ch3.

Full text
Abstract:
Ce chapitre détaille les principes physiques élémentaires des quatre principaux procédés additifs métalliques avec fusion, depuis l’absorption de l’énergie, jusqu’aux régimes de fusion, aux propriétés des zones fondues et aux instabilités hydrodynamiques associées.
APA, Harvard, Vancouver, ISO, and other styles
3

COLIN, Christophe. "Les microstructures des matériaux métalliques issus de fabrication additive." In La fabrication additive des alliages métalliques 2. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9055.ch1.

Full text
Abstract:
Ce chapitre traite des microstructures induites par FA en se concentrant sur les quatre principales familles d’alliages métalliques : aciers, alliages base titane, base nickel ou base aluminium, et en commençant par des notions de base sur la solidification. L’origine des microstructures et leur spécificité en fonction des procédés d’élaboration y sont présentées.
APA, Harvard, Vancouver, ISO, and other styles
4

BACROIX, Brigitte. "Les post-traitements en fabrication additive." In La fabrication additive des alliages métalliques 2. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9055.ch2.

Full text
Abstract:
Ce chapitre présente une synthèse des différents types de traitements post fabrication additive en distinguant trois catégories : les traitements thermiques, le traitement thermomécanique de CIC, et les traitements de surface. Les principes physiques de ces traitements et leurs effets sur les propriétés des pièces y sont passés en revue.
APA, Harvard, Vancouver, ISO, and other styles
5

THOMAS, Marc. "La matière première : les poudres et les fils métalliques." In La fabrication additive des alliages métalliques 1. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9054.ch2.

Full text
Abstract:
Ce chapitre décrit les différents moyens d’élaboration des poudres et des fils métalliques. Il met également en exergue tous les facteurs importants concernant cette matière première en termes de caractéristiques physico-chimiques et de rhéologie des poudres. En s’appuyant sur différents outils de caractérisation, la matière première révèle une forte influence vis-à-vis des procédés utilisés et des propriétés d’usage visées.
APA, Harvard, Vancouver, ISO, and other styles
6

CARIN, Muriel. "La simulation numérique des procédés de fabrication additive." In La fabrication additive des alliages métalliques 1. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9054.ch4.

Full text
Abstract:
Ce chapitre présente les éléments nécessaires à la simulation numérique des phénomènes physiques en fabrication additive. Les principales équations pour simuler le comportement thermo-hydrodynamique du bain liquide et le comportement thermo-métallurgique et mécanique de la pièce sont présentées. Divers exemples illustrent l’intérêt des outils de simulation, capables de prédire des défauts de surface, des porosités, des risques de fissuration.
APA, Harvard, Vancouver, ISO, and other styles
7

CHARKALUK, Éric. "Les propriétés d’usage des pièces élaborées par fabrication additive." In La fabrication additive des alliages métalliques 2. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9055.ch3.

Full text
Abstract:
Ce chapitre traite des propriétés d’usage des matériaux obtenus par fabrication additive, en comparant celles-ci, lorsque cela est possible, avec celles obtenues par des procédés plus conventionnels : propriétés statiques, résistance à la fatigue, fluage, corrosion. Une dernière partie est enfin consacrée au cas des matériaux architecturés qui réclament un traitement particulier et offrent une palette étendue de propriétés d’usage.
APA, Harvard, Vancouver, ISO, and other styles
8

Dennies, Daniel P., and S. Lampman. "Failures Related to Metal Additive Manufacturing." In Analysis and Prevention of Component and Equipment Failures. ASM International, 2021. http://dx.doi.org/10.31399/asm.hb.v11a.a0006838.

Full text
Abstract:
Abstract This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Fabrication additive métallique DED"

1

Maffia, Simone, Ondrej Kovarik, Jaroslav Cech, and Tobias Stittgen. "Investigating the Application of 3D-EHLA for Microstructure Control in Large-Scale Additive Manufacturing." In Euro Powder Metallurgy 2024 Congress & Exhibition. EPMA, 2024. http://dx.doi.org/10.59499/ep246283184.

Full text
Abstract:
Conventional powder Laser-Based Directed Energy Deposition (DED-LB) has revolutionized Additive Manufacturing (AM) by enabling the fabrication of large, support-free geometries and minimizing material waste through targeted deposition. Despite these advantages, conventional DED-LB faces challenges in microstructure control, primarily due to high heat inputs, limiting fine adjustments and compromising material integrity. In this work, the transformative potential of Ponticon’s 3D Extreme High-Speed Laser Metal Deposition (EHLA) for large-scale applications is investigated, highlighting its capa
APA, Harvard, Vancouver, ISO, and other styles
2

Sun, Kan, Yongjia Wu, Huan Qi, Zhiwei Wu, and Lei Zuo. "Direct Energy Deposition 3D Printing of Thermoelectric Materials: Simulation and Experiments." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-98396.

Full text
Abstract:
Abstract The thermoelectric material can directly convert energy between thermal and electric without involving any moving parts. Due to the limitation in geometry and efficiency of fabricating the thermoelectric modules in conventional methods, additive manufacturing is now becoming a promising solution. Direct Energy Deposition (DED) is superior for its large dimension limitation, fast processing speed, and independence from any powder bed. A physical model of DED fabrication with magnesium silicide (Mg2Si) powder was developed, and validation experiments were conducted. In the model and the
APA, Harvard, Vancouver, ISO, and other styles
3

Landes, Scott, Trupti Suresh, Anamika Prasad, Todd Letcher, Paul Gradl, and David Ellis. "Investigation of Additive Manufactured GRCop-42 Alloy Developed by Directed Energy Deposition Methods." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24400.

Full text
Abstract:
Abstract GRCop is an alloy family constructed of copper, chromium, and niobium and was developed by NASA for high heat flux applications. GRCop-alloys were specifically formulated for the requirements in channel-cooled main combustion chambers allowing for repeat use in high heat flux environments [1]. GRCop-84 was evolved using additive manufacturing techniques under a NASA development program. To further increase thermal conductivity while maintaining material strength characteristics, the percentage of alloying elements were cut in half and GRCop-42 was developed. In recent years, NASA has
APA, Harvard, Vancouver, ISO, and other styles
4

Hu, Guanzhong, Rujing Zha, Yaoke Wang, Jian Cao, and Ping Guo. "Digital Fringe Projection for Interlayer Print Defect Characterization in Directed Energy Deposition." In 2024 International Symposium on Flexible Automation. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/isfa2024-141314.

Full text
Abstract:
Abstract Directed Energy Deposition (DED) is one of the main additive manufacturing (AM) families, enabling the fabrication of multi-material parts with high material addition rates. However, the incremental nature of DED fabrication makes it prone to local defect formation due to process condition fluctuations. Known for its rapid and precise 3D surface measurement capabilities, digital fringe projection (DFP) was previously demonstrated in process monitoring for powder bed AM. This study brings DFP to the DED process through development of a custom motor stage system and validates its effect
APA, Harvard, Vancouver, ISO, and other styles
5

Akhavan, Javid, Ke Xu, Chaitanya Krishna Vallabh, and Souran Manoochehri. "Real-Time Print Tracking in Metal Additive Manufacturing Using Acoustic Emission Sensors and Vision Transformer Algorithms." In ASME 2024 19th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/msec2024-125391.

Full text
Abstract:
Abstract Directed Energy Deposition (DED) is an additive manufacturing (AM) method with applications in the aerospace, automotive, and healthcare sectors. In such complex and high-stakes applications, accurate and reliable monitoring is indispensable for assuring fabrication quality. Conventional monitoring systems using mechanical encoders and optical devices have limitations such as wear susceptibility and line-of-sight issues respectively, thereby necessitating alternative monitoring systems. One crucial aspect often overlooked in conventional monitoring systems is the real-time printing pr
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Wei, Alexandre Cachinhasky, Chad Yates, et al. "A Case Study for Graded Material Development." In Offshore Technology Conference. OTC, 2021. http://dx.doi.org/10.4043/31065-ms.

Full text
Abstract:
Abstract Tungsten carbide hardfacing offers superior wear resistance in a wide range of oil and gas applications. However, for designs of complex geometries, trade-offs often need to be made between manufacturing robustness and service lifecycle based on limited choices of conventional deposition processes. An additive manufacturing (AM) functionally graded tungsten carbide using laser directed energy deposition (L-DED) is developed in an integrated numerically controlled multi-axis machining center with multi-material feeding capability. Essential process parameters are optimized using design
APA, Harvard, Vancouver, ISO, and other styles
7

Saghafi, Marzia, Seyedeh Elnaz Mirazimzadeh, Ruth Jill Urbanic, and Ahmet Alpas. "Evaluating Bead Geometry, Hardness, and Residual Stress for a Multi-Layer 316L Laser-Wire Based DED Block." In ASME 2024 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2024. https://doi.org/10.1115/imece2024-145699.

Full text
Abstract:
Abstract Additive Manufacturing (AM) has revolutionized manufacturing by enabling the layer-by-layer fabrication of components from 3D model data, offering unprecedented design flexibility. Despite its numerous advantages, concerns persist regarding costs, technology readiness, and product reliability. AM excels in low volume production runs and processes like Directed Energy Deposition (DED) have gained recognition for manufacturing large metal parts and component repair. However, understanding the influence of heating and cooling cycles on final part properties remains a crucial research gap
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Qian, Jianyi Li, Abdalla R. Nassar, Edward W. Reutzel, and Wesley Mitchell. "Build Height Control in Directed Energy Deposition Using a Model-Based Feed-Forward Controller." In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-9058.

Full text
Abstract:
Control of deposition geometry is critical for repair and fabrication of complex components through directed energy deposition (DED). However, current limited sensing technology is often one of the bottlenecks that make it difficult to implement a real-time, measurement-feedback control of build geometry. Hence, this paper proposes to implement the control trajectories from a model-based, simulated-output feedback controller (where the controller uses simulated rather than measured outputs for feedback) as a feed-forward controller in a real DED process. We illustrate the effectiveness of such
APA, Harvard, Vancouver, ISO, and other styles
9

Manoharan, Madhanagopal, Potnuru Hema Praneetha Naidu, Midhun Joy, and Senthilkumaran Kumaraguru. "Medial Axis Transformation Based Design and Process Planning Methodology for Discrete Multi-Material Additive Manufacturing." In ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-89819.

Full text
Abstract:
Abstract Additive Manufacturing (AM) eases the fabrication of multifunctional simultaneous printing of multi-materials, which is quite cumbersome to fabricate in traditional manufacturing processes. Heterogeneous objects are entities engineered with multiple materials, and their emergence with the advent of AM is sporadic. This paper presents the novel layer decomposition methodology by utilizing Medial Axis Transformation (MAT) to generate discrete volumes for multi-material printing. Further, these discrete geometries are printed using multi-material addons, such as Palette Pro for material
APA, Harvard, Vancouver, ISO, and other styles
10

Hassan, Md Mehadi, Madhavan Radhakrishnan, David Otazu, Thomas Lienert, and Osman Anderoglu. "Investigation of Microstructure and Mechanical Properties of Additive Manufactured AISI - 420 Martensitic Steel Developed by Directed Energy Deposition Method." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-71777.

Full text
Abstract:
Abstract The traditional manufacturing approach to produce engineering components can have a high energy cost, high material waste, longer delivery times, and specific geometries that may be unattainable. The recent developments in additive manufacturing might provide the opportunity to produce complex engineering components, reduced manufacturing costs, and reduced delivery times. Direct Energy Deposition (DED) offers excellent possibilities such as fabrication of metal components with complex geometries, repair of high-value equipment, development of functionally graded materials, and large-
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Fabrication additive métallique DED"

1

Lienert, T. J., B. Long, D. Otazu, and Stuart Maloy. Additive Manufactured Grade 91 Fabrication Report using DED-L (M3CA-19-NM-LA-0604-018). Office of Scientific and Technical Information (OSTI), 2024. http://dx.doi.org/10.2172/2335744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!