Academic literature on the topic 'Face recognition. eng'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Face recognition. eng.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Face recognition. eng"
Ashok Kumar, M., and Sivaram Rajeyyagari. "Erratum to “A novel mechanism for dynamic multifarious and disturbed human face recognition using Advanced Stance Coalition (ASC)” [Comput Electr Eng 84 (June 2020) 106642]." Computers & Electrical Engineering 86 (September 2020): 106819. http://dx.doi.org/10.1016/j.compeleceng.2020.106819.
Full textZhao, Jian, Yu Cheng, Yi Cheng, Yang Yang, Fang Zhao, Jianshu Li, Hengzhu Liu, Shuicheng Yan, and Jiashi Feng. "Look across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 9251–58. http://dx.doi.org/10.1609/aaai.v33i01.33019251.
Full textEllis, Andrew W., Andrew W. Young, Brenda M. Flude, and Dennis C. Hay. "Repetition priming of face recognition." Quarterly Journal of Experimental Psychology Section A 39, no. 2 (May 1987): 193–210. http://dx.doi.org/10.1080/14640748708401784.
Full textSwain, Frank. "Egg donors paired by face recognition." New Scientist 239, no. 3189 (August 2018): 10. http://dx.doi.org/10.1016/s0262-4079(18)31375-7.
Full textZimmermann, Friederike G. S., Xiaoqian Yan, and Bruno Rossion. "An objective, sensitive and ecologically valid neural measure of rapid human individual face recognition." Royal Society Open Science 6, no. 6 (June 2019): 181904. http://dx.doi.org/10.1098/rsos.181904.
Full textZheng, Siming, Rahmita Wirza OK Rahmat, Fatimah Khalid, and Nurul Amelina Nasharuddin. "3D texture-based face recognition system using fine-tuned deep residual networks." PeerJ Computer Science 5 (December 2, 2019): e236. http://dx.doi.org/10.7717/peerj-cs.236.
Full textZarei, Shima. "Face recognition methods analysis." International Journal Artificial Intelligent and Informatics 1, no. 1 (July 10, 2018): 01. http://dx.doi.org/10.33292/ijarlit.v1i1.13.
Full textZhong, Yuanyi, Jiansheng Chen, and Bo Huang. "Toward End-to-End Face Recognition Through Alignment Learning." IEEE Signal Processing Letters 24, no. 8 (August 2017): 1213–17. http://dx.doi.org/10.1109/lsp.2017.2715076.
Full textZhang, Hongxin, and Liying Chi. "End-to-End Spatial Transform Face Detection and Recognition." Virtual Reality & Intelligent Hardware 2, no. 2 (April 2020): 119–31. http://dx.doi.org/10.1016/j.vrih.2020.04.002.
Full textMatsuda, Yoshi-Taka, Masako Myowa-Yamakoshi, and Satoshi Hirata. "Familiar face + novel face = familiar face? Representational bias in the perception of morphed faces in chimpanzees." PeerJ 4 (August 4, 2016): e2304. http://dx.doi.org/10.7717/peerj.2304.
Full textDissertations / Theses on the topic "Face recognition. eng"
Chiachia, Giovani. "Improving face recognition with multispectral fusion and support vector machines /." São José do Rio Preto : [s.n.], 2009. http://hdl.handle.net/11449/98661.
Full textBanca: Roberto Marcondes Cesar Junior
Banca: Ivan Rizzo Guilherme
Resumo: O reconhecimento facial é uma das principais formas de identificação humana. Apesar das pesquisas em reconhecimento facial automático terem crescido substancialmente ao longo dos últimos 35 anos, identificar pessoas a partir da face continua sendo um desafio para as áreas de Visão Computacional e Reconhecimento de Padrões. Em função dos cenários variarem desde a identificação a partir de fotografias até o reconhecimento baseado em vídeos sem nenhum tipo de controle ao serem gravados, os maiores desafios estão relacionados à independência contra diferentes tipos de iluminação, pose e expressão. O objetivo desta dissertação é propor técnicas que possam contribuir para a melhoria dos sistemas de reconhecimento facial. A primeira técnica endereça o problema da iluminação através da fusão dos espectros visível e infravermelho da face. Através desta abordagem, as taxas de reconhecimento foram melhoradas em 2.07% enquanto a taxa de erro igual (EER) foi reduzida em 45.47%. A segunda técnica trata do caso da extração e classificação de características faciais. Ela propõe um novo modelo para reconhecimento facial através do uso de características extraídas por Histogramas Census e de uma técnica de reconhecimento de padrões baseada em Máquinas de Vetores de Suporte (SVMs). Este outro grupo de experimentos nos possibilitou aumentar a precisão do reconhecimento no teste FERET fa/fb em 0.5%. Além destes resultados, algumas contribuições adicionais deste trabalho que merecem ser destacadas são a análise da dependência estatística entre classificadores de espectros diferentes e considerações sobre o comportamento de uma única C-SVC SVM para identificação de pessoas de forma eficaz.
Abstract: Face recognition is one of the primary ways of human identification. Although researches on automated face recognition have broadly increased along the last 35 years, it remains a challenging task in the fields of Computer Vision and Pattern Recognition. As the scenarios varies from static and constrained photographs to uncontrolled video images, the challenging issues on automatic face recognition are usually related with variations in illumination, pose and expressions. The goal of this master thesis is to propose techniques for the improvement of face recognition systems. The first technique addresses the problem of illumination by fusing the visible and the infrared spectra of the face. With this approach the recognition rates were improved in 2.07% while the Equal Error Rate (EER) were reduced in 45.47%. The second technique addresses the issue of face features extraction and classification. It proposes a new framework for face recognition by using features extracted by Census Histograms and a pattern recognition technique based on Support Vector Machines (SVMs). This other group of experiments enabled us to increase the recognition accuracy in the FERET fa/fb test in 0.5%. Beyond these results, additional contributions of this work that deserve to be highlighted are the statistical dependency analysis between face recognition systems based on different spectra and a better comprehension about the behavior of a single C-SVC SVM to reliably predict faces identities.
Mestre
Penteado, Bruno Elias. "Autenticação biométrica de usuários em sistemas de E-learning baseada em reconhecimento de faces a partir de vídeo /." São José do Rio Preto : [s.n.], 2009. http://hdl.handle.net/11449/98692.
Full textBanca: Agma Juci Machado Traina
Banca: Wilson Massashiro Yonezawa
Resumo: Nos últimos anos tem sido observado um crescimento exponencial na oferta de cursos a distância realizados pela Internet, decorrente de suas vantagens e características (menores custos de distribuição e atualização de conteúdo, gerenciamento de grandes turmas, aprendizado assíncrono e geograficamente independente, etc.), bem como de sua regulamentação e apoio governamental. Entretanto, a falta de mecanismos eficazes para assegurar a autenticação dos alunos neste tipo de ambiente é apontada como uma séria deficiência, tanto no acesso ao sistema quanto durante a participação do usuário nas atividades do curso. Atualmente, a autenticação baseada em senhas continua predominante. Porém, estudos têm sido conduzidos sobre possíveis aplicações da Biometria para autenticação em ambientes Web. Com a popularização e conseqüente barateamento de hardware habilitado para coleta biométrica (como webcams, microfone e leitores de impressão digital embutidos), a Biometria passa a ser considerada uma forma segura e viável de autenticação remota de indivíduos em aplicações Web. Baseado nisso, este trabalho propõe uma arquitetura distribuída para um ambiente de e-Learning, explorando as propriedades de um sistema Web para a autenticação biométrica tanto no acesso ao sistema quanto de forma contínua, durante a realização do curso. Para análise desta arquitetura, é avaliada a performance de técnicas de reconhecimento de faces a partir de vídeo capturadas on-line por uma webcam em um ambiente de Internet, simulando a interação natural de um indivíduo em um sistema de e- Learning. Para este fim, foi criada uma base de dados de vídeos própria, contando com 43 indivíduos navegando e interagindo com páginas Web. Os resultados obtidos mostram que os métodos analisados, consolidados na literatura, podem ser aplicados com sucesso nesse tipo de aplicação... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: In the last years it has been observed an exponential growth in the offering of Internet-enabled distance courses, due to its advantages and features (decreased distribution and content updates costs, management of large groups of students, asynchronous and geographically independent learning) as well as its regulation and governmental support. However, the lack of effective mechanisms that assure user authentication in this sort of environment has been pointed out as a serious deficiency, both in the system logon and during user attendance in the course assignments. Currently, password based authentication still prevails. Nevertheless, studies have been carried out about possible biometric applications for Web authentication. With the popularization and resultant decreasing costs of biometric enabled devices, such as webcams, microphones and embedded fingerprint sensors, Biometrics is reconsidered as a secure and viable form of remote authentication of individuals for Web applications. Based on that, this work presents a distributed architecture for an e-Learning environment, by exploring the properties of a Web system for biometric authentication both in the system logon and in continuous monitoring, during the course attendance. For the analysis of this architecture, the performance of techniques for face recognition from video, captured on-line by a webcam in an Internet environment, is evaluated, simulating the natural interaction of an individual in an e-Learning system. For that, a private database was created, with 43 individuals browsing and interacting with Web pages. The results show that the methods analyzed, though consolidated in the literature, can be successfully applied in this kind of application, with recognition rates up to 97% in ideal conditions, with low execution times and with short amount of information transmitted between client and server, with templates sizes of about 30KB.
Mestre
Gawrylowicz, Julie. "The construction of facial composites by witnesses with mild learning disabilities." Thesis, Abertay University, 2010. https://rke.abertay.ac.uk/en/studentTheses/4821765e-ab7f-480f-a0e1-65c9291bbc50.
Full textPorubsky, Jakub. "Biometric Authentication in M-Payments : Analysing and improving end-users’ acceptability." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-79221.
Full textMacKenzie, Graham. "Electrophysiological investigations of recognition memory : the role of pre-existing representations in recollection." Thesis, University of Stirling, 2007. http://hdl.handle.net/1893/324.
Full textBin, Mohd Isa Mohd Rizal. "Watermarked face recognition scheme : enhancing the security while maintaining the effectiveness of biometric authentication systems." Thesis, University of Portsmouth, 2016. https://researchportal.port.ac.uk/portal/en/theses/watermarked-face-recognition-scheme(a242609e-ba02-4cca-bfae-3615793fd018).html.
Full textKami, Guilherme José da Costa. "Análise de técnicas de reconhecimento de padrões para a identificação biométrica de usuários em aplicações WEB Utilizando faces a partir de vídeos /." São José do Rio Preto : [s.n.], 2011. http://hdl.handle.net/11449/98674.
Full textBanca: Hélio Pedrini
Banca: Aledir Silveira Pereira
Resumo: As técnicas para identificação biométrica têm evoluído cada vez mais devido à necessidade que os seres humanos têm de identificar as pessoas em tempo real e de forma precisa para permitir o acesso a determinados recursos, como por exemplo, as aplicações e serviços WEB. O reconhecimento facial é uma técnica biométrica que apresenta várias vantagens em relação às demais, tais como: uso de equipamentos simples e baratos para a obtenção das amostras e a possibilidade de se realizar o reconhecimento em sigilo e à distância. O reconhecimento de faces a partir de vídeo é uma tendência recente na área de Biometria. Esta dissertação tem por objetivo principal comparar diferentes técnicas de reconhecimento facial a partir de vídeo para determinar as que apresentam um melhor compromisso entre tempo de processamento e precisão. Outro objetivo é a incorporação dessas melhores técnicas no sistema de autenticação biométrica em ambientes de E-Learning, proposto em um trabalho anterior. Foi comparado o classificador vizinho mais próximo usando as medidas de distância Euclidiana e Mahalanobis com os seguintes classificadores: Redes Neurais MLP e SOM, K Vizinhos mais Próximos, Classificador Bayesiano, Máquinas de Vetores de Suporte (SVM) e Floresta de Caminhos Ótimos (OPF). Também foi avaliada a técnica de Modelos Ocultos de Markov (HMM). Nos experimentos realizados com a base Recogna Video Database, criada especialmente para uso neste trabalho, e Honda/UCSD Video Database, os classificadores apresentaram os melhores resultados em termos de precisão, com destaque para o classificador SVM da biblioteca SVM Torch. A técnica HMM, que incorpora informações temporais, apresentou resultados melhores do que as funções de distância, em termos de precisão, mas inferiores aos classificadores
Abstract: The biometric identification techniques have evolved increasingly due to the need that humans have to identify people in real time to allow access to certain resources, such as applications and Web services. Facial recognition is a biometric technique that has several advantages over others. Some of these advantages are the use of simple and cheap equipment to obtain the samples and the ability to perform the recognition in covert mode. The face recognition from video is a recent approach in the area of Biometrics. The work in this dissertation aims at comparing different techniques for face recognition from video in order to find the best rates on processing time and accuracy. Another goal is the incorporation of these techniques in the biometric authentication system for E-Learning environments, proposed in an earlier work. We have compared the nearest neighbor classifier using the Euclidean and Mahalanobis distance measures with some other classifiers, such as neural networks (MLP and SOM), k-nearest neighbor, Bayesian classifier, Support Vector Machines (SVM), and Optimum Path Forest (OPF). We have also evaluated the Hidden Markov Model (HMM) approach, as a way of using the temporal information. In the experiments with Recogna Video Database, created especially for this study, and Honda/UCSD Video Database, the classifiers obtained the best accuracy, especially the SVM classifier from the SVM Torch library. HMM, which takes into account temporal information, presented better performance than the distance metrics, but worse than the classifiers
Mestre
Lee, Won-Joon. "Cross-race effect on forensic facial reconstruction and recognition of reconstructed faces." Thesis, University of Dundee, 2012. https://discovery.dundee.ac.uk/en/studentTheses/72dcfcd8-e538-4d3b-98d3-b2c3425c8043.
Full textFerguson, Eilidh Louise. "Facial identification of children : a test of automated facial recognition and manual facial comparison techniques on juvenile face images." Thesis, University of Dundee, 2015. https://discovery.dundee.ac.uk/en/studentTheses/03679266-9552-45da-9c6d-0f062c4893c8.
Full textShostak, Lisa. "Social information processing, emotional face recognition and emotional response style in offending and non-offending adolescents." Thesis, King's College London (University of London), 2007. https://kclpure.kcl.ac.uk/portal/en/theses/social-information-processing-emotional-face-recognition-and-emotional-response-style-in-offending-and-nonoffending-adolescents(15ff1b2d-1e52-46b7-be1a-736098263ce1).html.
Full textBooks on the topic "Face recognition. eng"
Andreev, Anatoliy. Personocentrism in classical Russian literature of the XIX century. Dialectics of Artistic Consciousness. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1095050.
Full textBuhlmann, Ulrike, and Andrea S. Hartmann. Cognitive and Emotional Processing in Body Dysmorphic Disorder. Edited by Katharine A. Phillips. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190254131.003.0022.
Full textSongster, E. Elena. Panda Diplomacy. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199393671.003.0006.
Full textBlandón-Gitlin, Iris, and Amelia Mindthoff. Do Video Recordings Help Jurors Recognize Coercive Influences in Interrogations? Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190658113.003.0010.
Full textBix, Brian H. Private Ordering in Family Law. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786429.003.0013.
Full textSiklos, Pierre L. Central Banks into the Breach. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190228835.001.0001.
Full textClark, David. Palliative medicine: Historical record and challenges that remain. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199674282.003.0007.
Full textWaldman, Elisha, and Marcia Glass, eds. A Field Manual for Palliative Care in Humanitarian Crises. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780190066529.001.0001.
Full textQuint, David. Getting What You Wish For: A Reading of the Fall. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691161914.003.0007.
Full textWright, Emily M., and Calli M. Cain. Women in Prison. Edited by John Wooldredge and Paula Smith. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780199948154.013.9.
Full textBook chapters on the topic "Face recognition. eng"
Karasugi, I. Putu Agi, and Williem. "Face Mask Invariant End-to-End Face Recognition." In Computer Vision – ECCV 2020 Workshops, 261–76. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-68238-5_19.
Full textReddy, Bhargava, Ye-Hoon Kim, Sojung Yun, Junik Jang, and Soonhyuk Hong. "End to End Deep Learning for Single Step Real-Time Facial Expression Recognition." In Video Analytics. Face and Facial Expression Recognition and Audience Measurement, 88–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56687-0_8.
Full textNeylan, Christopher A., and Andrea Salgian. "Using Multiple Masks to Improve End-to-End Face Recognition Performance." In Advances in Visual Computing, 329–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89646-3_32.
Full textDuan, Lijuan, Xuebin Wang, Zhen Yang, Haiyan Zhou, Chunpeng Wu, Qi Zhang, and Jun Miao. "An Emotional Face Evoked EEG Signal Recognition Method Based on Optimal EEG Feature and Electrodes Selection." In Neural Information Processing, 296–305. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24955-6_36.
Full textTroeger, Sabine. "Just Societal Transformation: Perspectives of Pastoralists in the Lower Omo Valley in Ethiopia." In African Handbook of Climate Change Adaptation, 1–21. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-42091-8_265-1.
Full textTroeger, Sabine. "Just Societal Transformation: Perspectives of Pastoralists in the Lower Omo Valley in Ethiopia." In African Handbook of Climate Change Adaptation, 1–21. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-42091-8_265-2.
Full textTroeger, Sabine. "Just Societal Transformation: Perspectives of Pastoralists in the Lower Omo Valley in Ethiopia." In African Handbook of Climate Change Adaptation, 2447–67. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_265.
Full textRodrigues, J. M. F., R. Lam, K. Terzić, and J. M. H. du Buf. "Face and Object Recognition Using Biological Features and Few Views." In Advances in Systems Analysis, Software Engineering, and High Performance Computing, 58–77. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-6252-0.ch004.
Full textBerretti, Stefano, Alberto del Bimbo, and Pietro Pala. "3D Face Recognition Using Spatial Relations." In Computer Vision, 679–706. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-5204-8.ch026.
Full textSanders, Jet G., and Rob Jenkins. "Realistic Masks in the Real World." In Forensic Face Matching, 216–36. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198837749.003.0010.
Full textConference papers on the topic "Face recognition. eng"
Vazquez, Roberto A., and Humberto Sossa. "Random Features Applied to Face Recognition." In Eighth Mexican International Conference on Current Trends in Computer Science (ENC 2007). IEEE, 2007. http://dx.doi.org/10.1109/enc.2007.13.
Full textVazquez, Roberto A., and Humberto Sossa. "Random Features Applied to Face Recognition." In Eighth Mexican International Conference on Current Trends in Computer Science (ENC 2007). IEEE, 2007. http://dx.doi.org/10.1109/enc.2007.4351424.
Full textLiu, Decheng, Nannan Wang, Chunlei Peng, Jie Li, and Xinbo Gao. "Deep Attribute Guided Representation for Heterogeneous Face Recognition." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/116.
Full textXu, Kai, Dawei Li, Nick Cassimatis, and Xiaolong Wang. "LCANet: End-to-End Lipreading with Cascaded Attention-CTC." In 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018). IEEE, 2018. http://dx.doi.org/10.1109/fg.2018.00088.
Full textHe, Zhenliang, Meina Kan, Jie Zhang, Xilin Chen, and Shiguang Shan. "A Fully End-to-End Cascaded CNN for Facial Landmark Detection." In 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017). IEEE, 2017. http://dx.doi.org/10.1109/fg.2017.33.
Full textCai, Jiancheng, Han Hu, Shiguang Shan, and Xilin Chen. "FCSR-GAN: End-to-end Learning for Joint Face Completion and Super-resolution." In 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019). IEEE, 2019. http://dx.doi.org/10.1109/fg.2019.8756607.
Full textAspandi, Decky, Oriol Martinez, Federico Sukno, and Xavier Binefa. "Fully End-to-End Composite Recurrent Convolution Network for Deformable Facial Tracking In The Wild." In 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019). IEEE, 2019. http://dx.doi.org/10.1109/fg.2019.8756630.
Full textDou, Pengfei, Shishir K. Shah, and Ioannis A. Kakadiaris. "End-to-End 3D Face Reconstruction with Deep Neural Networks." In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017. http://dx.doi.org/10.1109/cvpr.2017.164.
Full textComas, Joaquim, Decky Aspandi, and Xavier Binefa. "End-to-end Facial and Physiological Model for Affective Computing and Applications." In 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020). IEEE, 2020. http://dx.doi.org/10.1109/fg47880.2020.00001.
Full textZhang, Junjie, Yuntao Liu, RongChun Li, and Yong Dou. "End-to-end Spatial Attention Network with Feature Mimicking for Head Detection." In 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020). IEEE, 2020. http://dx.doi.org/10.1109/fg47880.2020.00072.
Full text