Dissertations / Theses on the topic 'Face recognition. eng'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 19 dissertations / theses for your research on the topic 'Face recognition. eng.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Chiachia, Giovani. "Improving face recognition with multispectral fusion and support vector machines /." São José do Rio Preto : [s.n.], 2009. http://hdl.handle.net/11449/98661.
Full textBanca: Roberto Marcondes Cesar Junior
Banca: Ivan Rizzo Guilherme
Resumo: O reconhecimento facial é uma das principais formas de identificação humana. Apesar das pesquisas em reconhecimento facial automático terem crescido substancialmente ao longo dos últimos 35 anos, identificar pessoas a partir da face continua sendo um desafio para as áreas de Visão Computacional e Reconhecimento de Padrões. Em função dos cenários variarem desde a identificação a partir de fotografias até o reconhecimento baseado em vídeos sem nenhum tipo de controle ao serem gravados, os maiores desafios estão relacionados à independência contra diferentes tipos de iluminação, pose e expressão. O objetivo desta dissertação é propor técnicas que possam contribuir para a melhoria dos sistemas de reconhecimento facial. A primeira técnica endereça o problema da iluminação através da fusão dos espectros visível e infravermelho da face. Através desta abordagem, as taxas de reconhecimento foram melhoradas em 2.07% enquanto a taxa de erro igual (EER) foi reduzida em 45.47%. A segunda técnica trata do caso da extração e classificação de características faciais. Ela propõe um novo modelo para reconhecimento facial através do uso de características extraídas por Histogramas Census e de uma técnica de reconhecimento de padrões baseada em Máquinas de Vetores de Suporte (SVMs). Este outro grupo de experimentos nos possibilitou aumentar a precisão do reconhecimento no teste FERET fa/fb em 0.5%. Além destes resultados, algumas contribuições adicionais deste trabalho que merecem ser destacadas são a análise da dependência estatística entre classificadores de espectros diferentes e considerações sobre o comportamento de uma única C-SVC SVM para identificação de pessoas de forma eficaz.
Abstract: Face recognition is one of the primary ways of human identification. Although researches on automated face recognition have broadly increased along the last 35 years, it remains a challenging task in the fields of Computer Vision and Pattern Recognition. As the scenarios varies from static and constrained photographs to uncontrolled video images, the challenging issues on automatic face recognition are usually related with variations in illumination, pose and expressions. The goal of this master thesis is to propose techniques for the improvement of face recognition systems. The first technique addresses the problem of illumination by fusing the visible and the infrared spectra of the face. With this approach the recognition rates were improved in 2.07% while the Equal Error Rate (EER) were reduced in 45.47%. The second technique addresses the issue of face features extraction and classification. It proposes a new framework for face recognition by using features extracted by Census Histograms and a pattern recognition technique based on Support Vector Machines (SVMs). This other group of experiments enabled us to increase the recognition accuracy in the FERET fa/fb test in 0.5%. Beyond these results, additional contributions of this work that deserve to be highlighted are the statistical dependency analysis between face recognition systems based on different spectra and a better comprehension about the behavior of a single C-SVC SVM to reliably predict faces identities.
Mestre
Penteado, Bruno Elias. "Autenticação biométrica de usuários em sistemas de E-learning baseada em reconhecimento de faces a partir de vídeo /." São José do Rio Preto : [s.n.], 2009. http://hdl.handle.net/11449/98692.
Full textBanca: Agma Juci Machado Traina
Banca: Wilson Massashiro Yonezawa
Resumo: Nos últimos anos tem sido observado um crescimento exponencial na oferta de cursos a distância realizados pela Internet, decorrente de suas vantagens e características (menores custos de distribuição e atualização de conteúdo, gerenciamento de grandes turmas, aprendizado assíncrono e geograficamente independente, etc.), bem como de sua regulamentação e apoio governamental. Entretanto, a falta de mecanismos eficazes para assegurar a autenticação dos alunos neste tipo de ambiente é apontada como uma séria deficiência, tanto no acesso ao sistema quanto durante a participação do usuário nas atividades do curso. Atualmente, a autenticação baseada em senhas continua predominante. Porém, estudos têm sido conduzidos sobre possíveis aplicações da Biometria para autenticação em ambientes Web. Com a popularização e conseqüente barateamento de hardware habilitado para coleta biométrica (como webcams, microfone e leitores de impressão digital embutidos), a Biometria passa a ser considerada uma forma segura e viável de autenticação remota de indivíduos em aplicações Web. Baseado nisso, este trabalho propõe uma arquitetura distribuída para um ambiente de e-Learning, explorando as propriedades de um sistema Web para a autenticação biométrica tanto no acesso ao sistema quanto de forma contínua, durante a realização do curso. Para análise desta arquitetura, é avaliada a performance de técnicas de reconhecimento de faces a partir de vídeo capturadas on-line por uma webcam em um ambiente de Internet, simulando a interação natural de um indivíduo em um sistema de e- Learning. Para este fim, foi criada uma base de dados de vídeos própria, contando com 43 indivíduos navegando e interagindo com páginas Web. Os resultados obtidos mostram que os métodos analisados, consolidados na literatura, podem ser aplicados com sucesso nesse tipo de aplicação... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: In the last years it has been observed an exponential growth in the offering of Internet-enabled distance courses, due to its advantages and features (decreased distribution and content updates costs, management of large groups of students, asynchronous and geographically independent learning) as well as its regulation and governmental support. However, the lack of effective mechanisms that assure user authentication in this sort of environment has been pointed out as a serious deficiency, both in the system logon and during user attendance in the course assignments. Currently, password based authentication still prevails. Nevertheless, studies have been carried out about possible biometric applications for Web authentication. With the popularization and resultant decreasing costs of biometric enabled devices, such as webcams, microphones and embedded fingerprint sensors, Biometrics is reconsidered as a secure and viable form of remote authentication of individuals for Web applications. Based on that, this work presents a distributed architecture for an e-Learning environment, by exploring the properties of a Web system for biometric authentication both in the system logon and in continuous monitoring, during the course attendance. For the analysis of this architecture, the performance of techniques for face recognition from video, captured on-line by a webcam in an Internet environment, is evaluated, simulating the natural interaction of an individual in an e-Learning system. For that, a private database was created, with 43 individuals browsing and interacting with Web pages. The results show that the methods analyzed, though consolidated in the literature, can be successfully applied in this kind of application, with recognition rates up to 97% in ideal conditions, with low execution times and with short amount of information transmitted between client and server, with templates sizes of about 30KB.
Mestre
Gawrylowicz, Julie. "The construction of facial composites by witnesses with mild learning disabilities." Thesis, Abertay University, 2010. https://rke.abertay.ac.uk/en/studentTheses/4821765e-ab7f-480f-a0e1-65c9291bbc50.
Full textPorubsky, Jakub. "Biometric Authentication in M-Payments : Analysing and improving end-users’ acceptability." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-79221.
Full textMacKenzie, Graham. "Electrophysiological investigations of recognition memory : the role of pre-existing representations in recollection." Thesis, University of Stirling, 2007. http://hdl.handle.net/1893/324.
Full textBin, Mohd Isa Mohd Rizal. "Watermarked face recognition scheme : enhancing the security while maintaining the effectiveness of biometric authentication systems." Thesis, University of Portsmouth, 2016. https://researchportal.port.ac.uk/portal/en/theses/watermarked-face-recognition-scheme(a242609e-ba02-4cca-bfae-3615793fd018).html.
Full textKami, Guilherme José da Costa. "Análise de técnicas de reconhecimento de padrões para a identificação biométrica de usuários em aplicações WEB Utilizando faces a partir de vídeos /." São José do Rio Preto : [s.n.], 2011. http://hdl.handle.net/11449/98674.
Full textBanca: Hélio Pedrini
Banca: Aledir Silveira Pereira
Resumo: As técnicas para identificação biométrica têm evoluído cada vez mais devido à necessidade que os seres humanos têm de identificar as pessoas em tempo real e de forma precisa para permitir o acesso a determinados recursos, como por exemplo, as aplicações e serviços WEB. O reconhecimento facial é uma técnica biométrica que apresenta várias vantagens em relação às demais, tais como: uso de equipamentos simples e baratos para a obtenção das amostras e a possibilidade de se realizar o reconhecimento em sigilo e à distância. O reconhecimento de faces a partir de vídeo é uma tendência recente na área de Biometria. Esta dissertação tem por objetivo principal comparar diferentes técnicas de reconhecimento facial a partir de vídeo para determinar as que apresentam um melhor compromisso entre tempo de processamento e precisão. Outro objetivo é a incorporação dessas melhores técnicas no sistema de autenticação biométrica em ambientes de E-Learning, proposto em um trabalho anterior. Foi comparado o classificador vizinho mais próximo usando as medidas de distância Euclidiana e Mahalanobis com os seguintes classificadores: Redes Neurais MLP e SOM, K Vizinhos mais Próximos, Classificador Bayesiano, Máquinas de Vetores de Suporte (SVM) e Floresta de Caminhos Ótimos (OPF). Também foi avaliada a técnica de Modelos Ocultos de Markov (HMM). Nos experimentos realizados com a base Recogna Video Database, criada especialmente para uso neste trabalho, e Honda/UCSD Video Database, os classificadores apresentaram os melhores resultados em termos de precisão, com destaque para o classificador SVM da biblioteca SVM Torch. A técnica HMM, que incorpora informações temporais, apresentou resultados melhores do que as funções de distância, em termos de precisão, mas inferiores aos classificadores
Abstract: The biometric identification techniques have evolved increasingly due to the need that humans have to identify people in real time to allow access to certain resources, such as applications and Web services. Facial recognition is a biometric technique that has several advantages over others. Some of these advantages are the use of simple and cheap equipment to obtain the samples and the ability to perform the recognition in covert mode. The face recognition from video is a recent approach in the area of Biometrics. The work in this dissertation aims at comparing different techniques for face recognition from video in order to find the best rates on processing time and accuracy. Another goal is the incorporation of these techniques in the biometric authentication system for E-Learning environments, proposed in an earlier work. We have compared the nearest neighbor classifier using the Euclidean and Mahalanobis distance measures with some other classifiers, such as neural networks (MLP and SOM), k-nearest neighbor, Bayesian classifier, Support Vector Machines (SVM), and Optimum Path Forest (OPF). We have also evaluated the Hidden Markov Model (HMM) approach, as a way of using the temporal information. In the experiments with Recogna Video Database, created especially for this study, and Honda/UCSD Video Database, the classifiers obtained the best accuracy, especially the SVM classifier from the SVM Torch library. HMM, which takes into account temporal information, presented better performance than the distance metrics, but worse than the classifiers
Mestre
Lee, Won-Joon. "Cross-race effect on forensic facial reconstruction and recognition of reconstructed faces." Thesis, University of Dundee, 2012. https://discovery.dundee.ac.uk/en/studentTheses/72dcfcd8-e538-4d3b-98d3-b2c3425c8043.
Full textFerguson, Eilidh Louise. "Facial identification of children : a test of automated facial recognition and manual facial comparison techniques on juvenile face images." Thesis, University of Dundee, 2015. https://discovery.dundee.ac.uk/en/studentTheses/03679266-9552-45da-9c6d-0f062c4893c8.
Full textShostak, Lisa. "Social information processing, emotional face recognition and emotional response style in offending and non-offending adolescents." Thesis, King's College London (University of London), 2007. https://kclpure.kcl.ac.uk/portal/en/theses/social-information-processing-emotional-face-recognition-and-emotional-response-style-in-offending-and-nonoffending-adolescents(15ff1b2d-1e52-46b7-be1a-736098263ce1).html.
Full textWang, Zeng. "Laser-based detection and tracking of dynamic objects." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:c7f2da08-fa1e-4121-b06b-31aad16ecddd.
Full textVolfart, Angélique. "Étude du système visuel ventral dans l’épilepsie du lobe temporal à partir d’une nouvelle approche en électrophysiologie Typical visual unfamiliar face individuation in left and right mesial temporal epilepsy Intracerebral electrical stimulation of the right anterior fusiform gyrus selectively impairs human face identity recognition Neurophysiological evidence for crossmodal (face-name) person- identity representation in the human left ventral temporal cortex." Thesis, Université de Lorraine, 2020. http://www.theses.fr/2020LORR0119.
Full textThe ventral visual stream extends from the occipital to the anterior temporal regions and is specialized in recognizing objects and people through vision. Numerous studies in functional magnetic resonance imaging have focused on the cerebral basis of visual recognition. However, this technique is susceptible to magnetic artefacts in anterior temporal regions and it has led to an underestimation of the role of these regions within the ventral visual stream. The aim of this thesis is to better understand the mechanisms of visual recognition within the ventral occipito-temporal cortex and, more specifically, to clarify the contribution of posterior and anterior temporal structures in the visual recognition of a stimulus and its association with semantic representations. For this purpose, we used a multimodal approach combining neuropsychology, fast periodic visual stimulation (FPVS), and scalp and intracerebral EEG (SEEG) recordings in neurotypical and epileptic participants. We report five empirical studies in which we demonstrate that (1) patients with anterior temporal epilepsy (i.e., the most frequent type of focal epilepsy that undergo intracerebral EEG recordings) show typical performance in individual face discrimination, (2) electrical stimulation of the right anterior fusiform gyrus can lead to a transient deficit that is specific to face recognition, even when no naming is required, (3) familiar face discrimination processes involve a large network of bilateral ventral structures including the anterior and medial temporal regions, (4) some structures of the left ventral anterior temporal lobe are involved in the integration of a familiar face and its name into a unified representation, and (5) the bilateral ventral anterior temporal regions are involved in representing semantic knowledge associated with written words. Overall, this work shows that (1) the visual recognition network follows a progressive hierarchization along the postero-anterior axis of the ventral visual stream, with a graded transition between perceptual representations and increasingly abstract semantic representations, and (2) the regions involved in visual recognition are strongly lateralized in the ventral posterior regions and become bilateral in the ventral anterior temporal regions
Kaltwasser, Laura. "Influence of interpersonal abilities on social decisions and their physiological correlates." Doctoral thesis, Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17435.
Full textThe concept of interpersonal abilities refers to performance measures of social cognition such as the abilities to perceive and remember faces and the abilities to recognize and express emotions. The aim of this dissertation was to examine the influence of interpersonal abilities on social decisions. A particular focus lay on the quantification of individual differences in brain-behavior relationships associated with processing interpersonally relevant stimuli. Study 1 added to existing evidence on brain-behavior relationships, specifically between psychometric constructs of face cognition and event-related potentials associated with different stages of face processing (encoding, perception, and memory) in a familiarity decision. Our findings confirm a substantial relationship between the N170 latency and the early-repetition effect (ERE) amplitude with three established face cognition ability factors. The shorter the N170 latency and the more pronounced the ERE amplitude, the better is the performance in face perception and memory and the faster is the speed of face cognition. Study 2 found that the ability to recognize fearful faces as well as the general spontaneous expressiveness during social interaction are linked to prosocial choices in several socio-economic games. Sensitivity to the distress of others and spontaneous expressiveness foster reciprocal interactions with prosocial others. Study 3 confirmed the model of strong reciprocity in that prosociality drives negative reciprocity in the ultimatum game. Using multilevel structural equation modeling in order to estimate brain-behavior relationships of fairness preferences, we found strong reciprocators to show more pronounced relative feedback-negativity amplitude in response to the faces of bargaining partners. Thus, the results of this dissertation suggest that established individual differences in behavioral measures of interpersonal ability are partly due to individual differences in brain mechanisms.
Guillaumin, Matthieu. "Données multimodales pour l'analyse d'image." Phd thesis, Grenoble, 2010. http://tel.archives-ouvertes.fr/tel-00522278/en/.
Full text"Learning Deep Representations for Face Recognition." 2016. http://repository.lib.cuhk.edu.hk/en/item/cuhk-1292191.
Full textFirstly, we propose a novel deep neural network to learn identity-preserving representations for face recognition. The learned face representations are effective for face recognition and are also capable of reconstructing face images in their frontal views. Classical face recognition methods can be improved if applied on the reconstructed face images.
We further extend the first work by proposing a new deep learning framework that can recover the canonical view of face images which are taken in the wild environment. This approach directly learns the transformation between face images with a complex set of variations and their canonical views. As an application, this face recovery approach is used for face verification.
Moreover, we propose a deep model that can disentangle identities and viewpoints,and infer a full spectrum of multi-view images in the meanwhile, given a single 2D face image. The model is also capable of interpolating and predicting images under viewpoints that are unobserved in the training set. Experiments show that the representations learned by multi-view perception are more discriminative than those learned
by a single view.
Lastly, we propose a model compression method to enable the deployment of deep neural networks based face recognition systems, which usually contain large number ofparameters and require extensive computation resources, on mobile and embedded devices.
Zhu, Zhenyao.
Thesis Ph.D. Chinese University of Hong Kong 2016.
Includes bibliographical references (leaves ).
Abstracts also in Chinese.
Title from PDF title page (viewed on …).
"Deep learning for attribute inference, parsing, and recognition of face." 2014. http://repository.lib.cuhk.edu.hk/en/item/cuhk-1290660.
Full textFor face parsing, we propose a novel face parser, which recasts segmentation of face components as a cross-modality data transformation problem, i.e., transforming an image patch to a label map. Specifically, a face is represented hierarchically by parts, components, and pixel-wise labels. With this representation, this approach first detects faces at both the part- and component-levels, and then computes the pixel-wise label maps. The part-based and component-based detectors are generatively trained with the deep belief network (DBN), and are discriminatively tuned by logistic regression. The segmentators transform the detected face components to label maps, which are obtained by learning a highly nonlinear mapping with the deep autoencoder. The proposed hierarchical face parsing is not only robust to partial occlusions but also provide richer information for face analysis and face synthesis compared with face keypoint detection and face alignment.
For face attribute inference, the proposed approach captures the interdependencies of local regions for each attribute, as well as the high-order correlations between different attributes, which makes it more robust to occlusions and misdetection of face regions. First, we have modeled region interdependencies with a discriminative decision tree, where each node consists of a detector and a classifier trained on a local region. The detector allows us to locate the region, while the classifier determines the presence or absence of an attribute. Second, correlations of attributes and attribute predictors are modeled by organizing all of the decision trees into a large sum-product network (SPN), which is learned by the EM algorithm and yields the most probable explanation (MPE) of the facial attributes in terms of the region’s localization and classification. Experimental results on a large data set with 22,400 images show the effectiveness of the proposed approach.
For face recognition, this thesis addresses this challenge by proposing a new deep learning framework that can recover the canonical view of face images. It dramatically reduces the intra-person variances, while maintaining the inter-person discriminativeness. Unlike the existing face reconstruction methods that were either evaluated in controlled 2D environment or employed 3D information, our approach directly learns the transformation between face images with a complex set of variations and their canonical views. At the training stage, to avoid the costly process of labeling canonical-view images from the training set by hand, we have devised a new measurement and algorithm to automatically select or synthesize a canonical-view image for each identity. The recovered canonical-view face images are matched by using a facial component-based convolutional neural network. Our approach achieves the best performance on the LFW dataset under the unrestricted protocol. We also demonstrate that the performance of existing methods can be improved if they are applied to our recovered canonical-view face images.
近年來,深度學習算法被成功應用於解決各種困難的計算機視覺問題,例如圖像分割、物體識別和檢測等。深度學習算法,如深度神經網絡、深度卷積神經網絡、和深度置信度網絡在上述方面取得重要突破,並且算法性能超過了傳統計算機視覺算法。然而,人臉圖片,作為人的視覺認知最重要的環節之一,還沒有在深度學習框架下進行研究。本文以人臉圖片分析為背景,深入探討了適用的深度學習算法與不同的深度網絡結構。主要關注以下幾個應用,包括人臉分割、人臉屬性判斷、和人臉識別。
對於人臉分割問題,我們把傳統的計算機視覺分割問題變成一個高維空間數據轉換問題,即把人臉圖片轉換為分割圖。一張人臉圖片可以層次化的表示為像素塊、人臉關鍵點(五官)、和人臉區域。通過使用該人臉表示,我們的方法先檢測人臉的區域,其次檢測人臉關鍵點,最後根據人臉關鍵點位置把像素塊轉換為分割圖。本文提出的方法包括兩個步驟:關鍵點檢測和圖元轉換為分割圖。本文使用深度置信度網絡進行關鍵點檢測;使用深度編碼器進行像素點到分割圖的轉換。該方法對人臉遮擋也具有魯棒性。
對於人臉屬性判斷,本文提出的方法對兩種相關性進行建模,包括人臉關鍵區域相關性和人臉屬性之間的相關性。我們使用決策樹對人臉關鍵區域相關性進行建模。通過把尋找與決策樹一一對應的Sum-Product樹對屬性之間的相關性進行建模。通過對22400張人臉圖片進行實驗,驗證本文提出的方法的有效性與魯棒性。
對於人臉識別問題,本論文提出了一種新的人臉表示方法,稱爲人臉身份保持性特徵。該特徵能夠保持不同身份人臉之間的判別性,同時減少同一身份人臉間的變化。該特徵還可以恢復輸入人臉圖片的正臉。使用該正臉圖片進行人臉歸一化,可以使現有人臉識別算法的準確率都能得到提高。
Luo, Ping.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2014.
Includes bibliographical references (leaves 83-95).
Abstracts also in Chinese.
Title from PDF title page (viewed on 27, October, 2016).
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Bento, Francisco Escudeiro. "From face perception neuroscience to identification of fuctional imaging markers in neuropsychiatric disorders." Master's thesis, 2020. http://hdl.handle.net/10316/93884.
Full textA perceção de rostos é um dos aspetos básicos para as interações sociais. Desde muito cedo, aprendemos a interagir com outras pessoas, expressando várias emoções e sentimentos que podem ser vistos pelas expressões nos rostos das pessoas. Estudar os correlatos neurais do reconhecimento de emoção é meio caminho andado para ajudar as pessoas com dificuldades neste importante domínio cognitivo e afetivo.Estudos neurofisiológicos anteriores relativos às respostas do cérebro às emoções conduzem a resultados controversos e muitas vezes não replicáveis. Teremos duas tarefas principais para este trabalho.A primeira tarefa é tentar replicar alguns estudos já feitos na área de reconhecimento de emoções e tentar encontrar algumas diferenças estatísticas entre três emoções (Triste, Neutra e Feliz) para o N170.O segundo objetivo desta tese é compreender e explicar os motivos pelos quais alguns estudos levam a resultados controversos e não replicáveis. Supondo que a tarefa seja realizada de maneira adequada, um dos motivos para isso é a utilização de métodos diferentes no pré-processamento dos dados.A nossa tarefa utilizou 10 sujeitos (4 mulheres, 6 homens), onde cada sujeito fez 4 execuções de EEG e cada corrida teve cerca de 6 minutos de registo. A tarefa consistia em mostrar uma face neutra ao sujeito e após um GAP mostrar a instrução. A instrução era um rosto com uma emoção olhando para um dos lados. Depois disso, eles deviam completar uma sacada ou anti-sacada.Depois de obter os dados, usamos diferentes métodos de pré-processamento: 1) interpolação; 2) Re-referência; 3) filtros, correção de linha de base e rejeição de épocas e 4) Análise de Componentes Independentes (ICA).Para o primeiro objetivo, poderíamos replicar alguns estudos anteriores e encontramos diferenças estatísticas entre as diferentes emoções para o N170.Para o segundo objetivo concluímos que todo método de pré-processamento tem influência significativa nos resultados, dando diferentes amplitudes e latências para ERP’s. Também recomendamos que, para um resultado mais confiável, usemos todos os métodos de pré-processamento mencionados neste documento.
The perception of faces is one of the basic aspects for social interactions. From very young age we learned to interact with others by expressing various emotions and feelings that can be seen by expressions in people’s faces. Studying the neural correlates of emotion recognition is halfway to help people with difficulties in this important cognitive and affective domain. Previous neurophysiological studies concerning brain responses to emotions lead controversial and often nonreplicable results. We will have two main tasks for this work.The first task is to try to replicate some studies already made in the area of emotion recognition and try to find some statistical differences between three emotions (Sad, Neutral and Happy) for the N170.The second objective of this thesis is to understand and explain the reasons why some studies lead to controversial results and nonreplicable results. Assuming that the task is done properly, one of the reasons for that is the use of different methods in the pre-processing data. Our task used 10 subjects (4 females, 6 males), where each subject done 4 EEG runs and each run had around 6 minutes of recording. The task consisted in showing a neutral face to the subject and after a GAP show the instruction. The instruction was a face with an emotion looking to on side. After that they should complete a saccade or an anti-saccade. After getting the data we used different methods of pre-processing: 1) interpolation; 2) Re-reference; 3) filters, baseline correction and epochs rejection and 4) Independent Component Analysis (ICA).For the first objective we could replicate some previous studies and we found statistical differences between the different emotions for the N170.For the second objective we concluded that every method of pre-processing has significant influence in the results, giving different amplitudes and latencies for ERP’s. We also recommend that for a more reliable result we should use every method of pre-processing that we refer on this paper.
Mendes, Bruno Miguel Vilela. "Analysis of eyewitness testimony using electroencephalogram signals." Master's thesis, 2021. http://hdl.handle.net/10773/31348.
Full textA aplicação de técnicas de Interfaces Cérebro-Computador a testemunhas vitais de um crime pode e provavelmente será uma funcionalidade chave no sistema de justiça. Características de sinais provenientes de eletroencefalograma foram extraídas com informações sobre o seu domínio (tempo ou frequência), e a sua localização espacial e temporal. Para ambos os domínios, dois modelos de classificação diferentes foram aplicados com vista a selecionar as características mais relevantes: um para classificar, ordenar e selecionar as características mais importantes e outro para eliminar recursivamente a característica menos relevante. O modelo utilizado para classificação foi o Support Vector Machine (linear e não linear). Outras observações sobre as características selecionadas pelas técnicas aplicadas foram realizadas e discutidas tendo em conta o conhecimento disponível sobre reconhecimento facial. O presente trabalho fornece um estudo experimental sobre os sinais de eletroencefalograma adquiridos numa experiência na qual foi pedido a um grupo de indivíduos para identificar tanto culpado como distrator, sendo que o culpado estava relacionado a um vídeo de cenário de crime mostrado anteriormente.
Mestrado em Engenharia de Computadores e Telemática
Caplette, Laurent. "La reconnaissance visuelle à travers le temps : attentes, échantillonnage et traitement." Thèse, 2019. http://hdl.handle.net/1866/23481.
Full textVisual recognition is a temporal process: first, visual information is continuously received through time on our retina; second, the processing of visual information by our brain takes time; third, our perception is function of both the present sensory input and our past experiences. Interactions between these temporal aspects have rarely been discussed in the literature. In this thesis, we assess the sampling of visual information through time during recognition tasks, how it is translated in the brain, and how it is modulated by expectations of specific objects. Several studies report that expectations modulate perception. However, how the expectation of a specific object modulates our internal representations remains largely unknown. In the first article of this thesis, we use a variant of the Bubbles technique to uncover the precise time course of visual information use during object recognition when specific objects are expected or not. We show that expectations modulate the representations of different features differently, and that they have distinct effects at distinct moments throughout the reception of visual information. In the second article, we use a similar method in conjunction with electroencephalography (EEG) to reveal for the first time the processing, through time, of information received at a specific moment during an eye fixation. We show that visual information is not processed in the same way depending on the moment at which it is received on the retina, that these differences cannot be explained by simple adaptation or repetition priming, that they are of at least partly top- down origin, and that they correlate with behavior. Finally, in a third article, we push this investigation further by using magnetoencephalography (MEG) and examining brain activity in different brain regions. We show that the sampling of visual information is highly variable depending on the moment at which information arrives on the retina in large parts of the occipital and parietal lobes. Furthermore, we show that this sampling is rhythmic, oscillating at multiple frequencies between 7 and 30 Hz, and that these oscillations vary according to the sampled feature.