Academic literature on the topic 'Fahraeus-Lindqvist effect'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fahraeus-Lindqvist effect.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fahraeus-Lindqvist effect"
Shul'man, Z. P., L. V. Markova, and A. A. Makhanek. "Rheological factor and Fahraeus-Lindqvist effect." Journal of Engineering Physics and Thermophysics 68, no. 3 (1996): 353–63. http://dx.doi.org/10.1007/bf00859048.
Full textGoldsmith, H. L., G. R. Cokelet, and P. Gaehtgens. "Robin Fahraeus: evolution of his concepts in cardiovascular physiology." American Journal of Physiology-Heart and Circulatory Physiology 257, no. 3 (September 1, 1989): H1005—H1015. http://dx.doi.org/10.1152/ajpheart.1989.257.3.h1005.
Full textMcKay, C. B., and H. J. Meiselman. "Osmolality-mediated Fahraeus and Fahraeus-Lindqvist effects for human RBC suspensions." American Journal of Physiology-Heart and Circulatory Physiology 254, no. 2 (February 1, 1988): H238—H249. http://dx.doi.org/10.1152/ajpheart.1988.254.2.h238.
Full textFonseca de Brito, Patricia, Lucas Diego Mota Meneses, Rodrigo Weber dos Santos, and Rafael Alves Bonfim de Queiroz. "Automatic construction of 3D models of arterial tree incorporating the Fahraeus-Lindqvist effect." C.Q.D. – Revista Eletrônica Paulista de Matemática 10 (December 2017): 38–49. http://dx.doi.org/10.21167/cqdvol10ermac201723169664pfbldmmrwsrabq3849.
Full textMajhi, S. N., and L. Usha. "Modelling the Fahraeus-Lindqvist effect through fluids of differential type." International Journal of Engineering Science 26, no. 5 (January 1988): 503–8. http://dx.doi.org/10.1016/0020-7225(88)90008-0.
Full textHuo, Yunlong, and Ghassan S. Kassab. "Effect of compliance and hematocrit on wall shear stress in a model of the entire coronary arterial tree." Journal of Applied Physiology 107, no. 2 (August 2009): 500–505. http://dx.doi.org/10.1152/japplphysiol.91013.2008.
Full textStergiou, Yorgos G., Aggelos T. Keramydas, Antonios D. Anastasiou, Aikaterini A. Mouza, and Spiros V. Paras. "Experimental and Numerical Study of Blood Flow in μ-vessels: Influence of the Fahraeus–Lindqvist Effect." Fluids 4, no. 3 (August 1, 2019): 143. http://dx.doi.org/10.3390/fluids4030143.
Full textReinke, W., P. Gaehtgens, and P. C. Johnson. "Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation." American Journal of Physiology-Heart and Circulatory Physiology 253, no. 3 (September 1, 1987): H540—H547. http://dx.doi.org/10.1152/ajpheart.1987.253.3.h540.
Full textMAJHI, S., and L. USHA. "A mathematical note on the Fahraeus-Lindqvist effect in power law fluid." Bulletin of Mathematical Biology 47, no. 6 (1985): 765–69. http://dx.doi.org/10.1016/s0092-8240(85)90040-0.
Full textGHOFRANI MAAB, M., and S. M. MOUSAVIAN. "NUMERICAL SIMULATION OF RBCs MIGRATION TOWARD THE CENTER AREA OF THE ARTERIOLE, FAHRAEUS–LINDQVIST EFFECT." Journal of Mechanics in Medicine and Biology 12, no. 04 (September 2012): 1250082. http://dx.doi.org/10.1142/s0219519412500820.
Full textDissertations / Theses on the topic "Fahraeus-Lindqvist effect"
Brito, Patrícia Fonseca de. "Construção de modelos de árvores arteriais considerando o efeito Fahraeus-Lindqvist." Universidade Federal de Juiz de Fora (UFJF), 2016. https://repositorio.ufjf.br/jspui/handle/ufjf/3293.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-02-13T16:45:56Z (GMT) No. of bitstreams: 1 patriciafonsecadebrito.pdf: 15405226 bytes, checksum: d3d134135b13194c75ee40afae239681 (MD5)
Made available in DSpace on 2017-02-13T16:45:56Z (GMT). No. of bitstreams: 1 patriciafonsecadebrito.pdf: 15405226 bytes, checksum: d3d134135b13194c75ee40afae239681 (MD5) Previous issue date: 2016-09-13
FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais
Modelos de árvores arteriais têm sido utilizados com sucesso para obter uma melhor compreensão de todos os aspectos relacionados à hemodinâmica de regiões clinicamente relevantes do corpo humano, passando pelo diagnóstico e com aplicações no planejamento cirúrgico. A principal motivação para a construção desses modelos é a dificuldade em se obter dados anatômicos suficiêntes que permitam descrever em detalhes as estruturas geométrica e topológica de redes arteriais periféricas. Basicamente, os modelos podem ser classificados em: anatômico, parâmetro condensado, fractal e otimizado. Neste trabalho, foca-se na geração de modelos otimizados no contexto do método CCO (Constrained Constructive Optimization). Tal método é capaz de gerar modelos de árvores arteriais que reproduzem características de árvores coronarianas reais, como perfis de pressão, diâmetro dos vasos e distribuição dos ângulos de bifurcação. No entanto, este método não considera uma viscosidade sanguínea realística durante a geração dos modelos, ou seja, despreza o efeito Fahraeus-Lindqvist, o qual indica que a viscosidade sanguínea depende não linearmente do diâmetro do vaso no qual o sangue está escoando e da descarga de hematócrito. Neste contexto, no trabalho investiga-se um algoritmo inspirado no método CCO que leva em conta tal efeito durante a construção de modelos de árvores arteriais. Diversos cenários de simulações 2D/3D empregando este algoritmo foram realizados com intuito de estudar a influência da escolha da viscosidade sanguínea nas propriedades morfométricas e hemodinâmicas dos modelos. Os resultados obtidos nos indicam que a viscosidade sanguínea afeta a distribuição dos raios dos segmentos, a arquitetura e os perfis de pressão dos modelos gerados através de simulações no computador. Além disso, estes modelos in silico são condizentes com árvores arteriais coronarianas reais.
Arterial tree models have been successfully used to gain a better understanding of all hemodynamics aspects of clinically relevant regions of the human body, including diagnosis and applications in surgical planning. The main motivation for the construction of these models is the difficulty to obtain sufficient anatomical data to describe in detail the geometrical and topological structures of peripheral arterial networks. Basically, the models can be classified into: anatomical, lumped parameter, fractal and optimized. This work focuses on the generation of optimized models based on Constructive Constrained Optimization (CCO) method. CCO is capable of generating arterial tree models that reproduce characteristics of real coronary tree, such as pressure profiles, vessel diameter and bifurcation angle distribution. However, this method does not consider a realistic blood viscosity during the generation of models, i.e., it disregards the F˚ahraeus-Lindqvist effect, which indicates that the blood viscosity depends nonlinearly on diameter of the vessel in which blood is draining and on discharge of hematocrit. In this context, the work investigates an algorithm that takes into account this effect during the construction of models of arterial trees. Several scenarios of 2D/3D simulations using this algorithm were done in order to study the influence of the choice of blood viscosity on morphometric and hemodynamic properties of the models. The results indicate that the blood viscosity affects the distribution of vessel radii, the architecture and pressure profiles of the models generated through computer simulations. Furthermore, these in silico models are consistent with real coronary arterial trees.
Book chapters on the topic "Fahraeus-Lindqvist effect"
Brito, P. F., L. D. M. Meneses, B. M. Rocha, R. W. Santos, and R. A. B. Queiroz. "Construction of arterial networks considering the Fahraeus-Lindqvist effect." In VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th -28th, 2016, 277–80. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4086-3_70.
Full text"- The Fahraeus–Lindqvist Effect: Using Microchannels to Observe Small Vessel Hemodynamics." In A Laboratory Course in Tissue Engineering, 218–27. CRC Press, 2016. http://dx.doi.org/10.1201/b12792-21.
Full textConference papers on the topic "Fahraeus-Lindqvist effect"
Lin, Xiaohui, Chibin Zhang, Changbao Wang, Wenquan Chu, and Zhaomin Wang. "A Two-Phase Model for Analysis of Blood Flow and Rheological Properties in the Elastic Microvessel." In ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icnmm2016-8103.
Full textMassoudi, Mehrdad, Jeongho Kim, Samuel J. Hund, and James F. Antaki. "Application of the Theory of Interacting Continua to Blood Flow." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53260.
Full textFarhat, Hassan, and Joon Sang Lee. "The Study of RBC Deformation in Capillaries With a Lattice Boltzmann Method for Surfactant Covered Droplets." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12629.
Full text