Academic literature on the topic 'Fair Machine Learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fair Machine Learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fair Machine Learning"
Basu Roy Chowdhury, Somnath, and Snigdha Chaturvedi. "Sustaining Fairness via Incremental Learning." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 6 (2023): 6797–805. http://dx.doi.org/10.1609/aaai.v37i6.25833.
Full textPerello, Nick, and Przemyslaw Grabowicz. "Fair Machine Learning Post Affirmative Action." ACM SIGCAS Computers and Society 52, no. 2 (2023): 22. http://dx.doi.org/10.1145/3656021.3656029.
Full textRance, Joseph, and Filip Svoboda. "Can Private Machine Learning Be Fair?" Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 19 (2025): 20121–29. https://doi.org/10.1609/aaai.v39i19.34216.
Full textOneto, Luca. "Learning fair models and representations." Intelligenza Artificiale 14, no. 1 (2020): 151–78. http://dx.doi.org/10.3233/ia-190034.
Full textKim, Yun-Myung. "Data and Fair use." Korea Copyright Commission 141 (March 30, 2023): 5–53. http://dx.doi.org/10.30582/kdps.2023.36.1.5.
Full textKim, Yun-Myung. "Data and Fair use." Korea Copyright Commission 141 (March 30, 2023): 5–53. http://dx.doi.org/10.30582/kdps.2023.36.1.5.
Full textZhang, Xueru, Mohammad Mahdi Khalili, and Mingyan Liu. "Long-Term Impacts of Fair Machine Learning." Ergonomics in Design: The Quarterly of Human Factors Applications 28, no. 3 (2019): 7–11. http://dx.doi.org/10.1177/1064804619884160.
Full textZhu, Yunlan. "The Comparative Analysis of Fair Use of Works in Machine Learning." SHS Web of Conferences 178 (2023): 01015. http://dx.doi.org/10.1051/shsconf/202317801015.
Full textJEONG, JIN KEUN. "Will the U.S. Court Judge TDM for Artificial Intelligence Machine Learning as Fair Use?" Korea Copyright Commission 144 (December 31, 2023): 215–50. http://dx.doi.org/10.30582/kdps.2023.36.4.215.
Full textRedko, Ievgen, and Charlotte Laclau. "On Fair Cost Sharing Games in Machine Learning." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 4790–97. http://dx.doi.org/10.1609/aaai.v33i01.33014790.
Full textDissertations / Theses on the topic "Fair Machine Learning"
Vo, Thi Quynh Trang. "Algorithms and Machine Learning for fair and classical combinatorial optimization." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2024. http://www.theses.fr/2024UCFA0035.
Full textSchildt, Alexandra, and Jenny Luo. "Tools and Methods for Companies to Build Transparent and Fair Machine Learning Systems." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279659.
Full textDalgren, Anton, and Ylva Lundegård. "GreenML : A methodology for fair evaluation of machine learning algorithms with respect to resource consumption." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-159837.
Full textGordaliza, Pastor Paula. "Fair learning : une approche basée sur le transport optimale." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30084.
Full textGrari, Vincent. "Adversarial mitigation to reduce unwanted biases in machine learning." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS096.
Full textBerisha, Visar. "AI as a Threat to Democracy : Towards an Empirically Grounded Theory." Thesis, Uppsala universitet, Statsvetenskapliga institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-340733.
Full textSitruk, Jonathan. "Fais Ce Qu'il Te Plaît... Mais Fais Le Comme Je L'aime : Amélioration des performances en crowdfunding par l’utilisation des catégories et des récits." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR0018.
Full textMuriithi, Paul Mutuanyingi. "A case for memory enhancement : ethical, social, legal, and policy implications for enhancing the memory." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/a-case-for-memory-enhancement-ethical-social-legal-and-policy-implications-for-enhancing-the-memory(bf11d09d-6326-49d2-8ef3-a40340471acf).html.
Full textAzami, Sajjad. "Exploring fair machine learning in sequential prediction and supervised learning." Thesis, 2020. http://hdl.handle.net/1828/12098.
Full textAllabadi, Swati. "Algorithms for Fair Clustering." Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5709.
Full textBooks on the topic "Fair Machine Learning"
Practicing Trustworthy Machine Learning: Consistent, Transparent, and Fair AI Pipelines. O'Reilly Media, Incorporated, 2022.
Find full textDrago Plečko and Elias Bareinboim. Causal Fairness Analysis: A Causal Toolkit for Fair Machine Learning. Now Publishers, 2024.
Find full textChatterjee, Sharmistha. Platform and Model Design for Responsible AI: Design and Build Resilient, Private, Fair, and Transparent Machine Learning Models. Packt Publishing, Limited, 2023.
Find full textChatterjee, Sharmistha. Platform and Model Design for Responsible AI: Design and Build Resilient, Private, Fair, and Transparent Machine Learning Models. de Gruyter GmbH, Walter, 2023.
Find full textMolak, Aleksander. Interpretable Machine Learning with Python: Build Explainable, Fair, and Robust High-Performance Models with Hands-on, Real-world Examples. de Gruyter GmbH, Walter, 2023.
Find full textMasis, Serg. Interpretable Machine Learning with Python: Build Explainable, Fair, and Robust High-Performance Models with Hands-On, Real-World Examples. Packt Publishing, Limited, 2022.
Find full textVallor, Shannon, and George A. Bekey. Artificial Intelligence and the Ethics of Self-Learning Robots. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190652951.003.0022.
Full textBook chapters on the topic "Fair Machine Learning"
Pérez-Suay, Adrián, Valero Laparra, Gonzalo Mateo-García, Jordi Muñoz-Marí, Luis Gómez-Chova, and Gustau Camps-Valls. "Fair Kernel Learning." In Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71249-9_21.
Full textFreitas, Alex, and James Brookhouse. "Evolutionary Algorithms for Fair Machine Learning." In Handbook of Evolutionary Machine Learning. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3814-8_17.
Full textVan, Minh-Hao, Wei Du, Xintao Wu, and Aidong Lu. "Poisoning Attacks on Fair Machine Learning." In Database Systems for Advanced Applications. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-00123-9_30.
Full textVan, Minh-Hao, Wei Du, Xintao Wu, and Aidong Lu. "Poisoning Attacks on Fair Machine Learning." In Database Systems for Advanced Applications. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-00123-9_30.
Full textWu, Yongkai, Lu Zhang, and Xintao Wu. "Fair Machine Learning Through the Lens of Causality." In Machine Learning for Causal Inference. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-35051-1_6.
Full textAbdollahi, Behnoush, and Olfa Nasraoui. "Transparency in Fair Machine Learning: the Case of Explainable Recommender Systems." In Human and Machine Learning. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90403-0_2.
Full textHridi, Anurata Prabha, and Benjamin Watson. "Are Fair Machine Learning Models More Useful?" In Lecture Notes in Computer Science. Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-76827-9_3.
Full textLappas, Theodoros, and Evimaria Terzi. "Toward a Fair Review-Management System." In Machine Learning and Knowledge Discovery in Databases. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23783-6_19.
Full textZhang, Mingwu, Xiao Chen, Gang Shen, and Yong Ding. "A Fair and Efficient Secret Sharing Scheme Based on Cloud Assisting." In Machine Learning for Cyber Security. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30619-9_25.
Full textRančić, Sanja, Sandro Radovanović, and Boris Delibašić. "Investigating Oversampling Techniques for Fair Machine Learning Models." In Lecture Notes in Business Information Processing. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73976-8_9.
Full textConference papers on the topic "Fair Machine Learning"
Mitra, Purbesh, and Sennur Ulukus. "A Learning Based Scheme for Fair Timeliness in Sparse Gossip Networks." In 2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN). IEEE, 2024. http://dx.doi.org/10.1109/icmlcn59089.2024.10624766.
Full textPriyadarshini, Amisha, and Sergio Gago-Masague. "Fair Evaluator: An Adversarial Debiasing-based Deep Learning Framework in Student Admissions." In 2024 IEEE 6th International Conference on Cognitive Machine Intelligence (CogMI). IEEE, 2024. https://doi.org/10.1109/cogmi62246.2024.00029.
Full textOikonomou, Foteini, Eleftherios Bailis, Sotiris Bentos, et al. "Towards Fair Recidivism Prediction: Addressing Bias in Machine Learning for the Greek Prison System." In 2025 5th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET). IEEE, 2025. https://doi.org/10.1109/iraset64571.2025.11008007.
Full textZhai, Fuqiang. "Training Method for a Fair Machine Learning Model Based on a Multi-Objective Evolutionary Algorithm." In 2024 Asia Pacific Conference on Innovation in Technology (APCIT). IEEE, 2024. http://dx.doi.org/10.1109/apcit62007.2024.10673611.
Full textV, Malavika, Nikita Mabel M, Chantelle I. Dmonte, Mohammed Zaid, and Lenish Pramiee J. "Fair Price Prediction for Farmers: Leveraging Freshness of Perishable Goods Through Machine Learning and Sustainable Practices." In 2025 IEEE 14th International Conference on Communication Systems and Network Technologies (CSNT). IEEE, 2025. https://doi.org/10.1109/csnt64827.2025.10968584.
Full textPerrier, Elija. "Quantum Fair Machine Learning." In AIES '21: AAAI/ACM Conference on AI, Ethics, and Society. ACM, 2021. http://dx.doi.org/10.1145/3461702.3462611.
Full textKearns, Michael. "Fair Algorithms for Machine Learning." In EC '17: ACM Conference on Economics and Computation. ACM, 2017. http://dx.doi.org/10.1145/3033274.3084096.
Full textDai, Jessica, Sina Fazelpour, and Zachary Lipton. "Fair Machine Learning Under Partial Compliance." In AIES '21: AAAI/ACM Conference on AI, Ethics, and Society. ACM, 2021. http://dx.doi.org/10.1145/3461702.3462521.
Full textLiu, Lydia T., Sarah Dean, Esther Rolf, Max Simchowitz, and Moritz Hardt. "Delayed Impact of Fair Machine Learning." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/862.
Full textWang, Haoyu, Hanyu Hu, Mingrui Zhuang, and Jiayi Shen. "Integrating Machine Learning into Fair Inference." In The International Conference on New Media Development and Modernized Education. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0011908000003613.
Full textReports on the topic "Fair Machine Learning"
Strinzel, Michaela, Gabriel Okasa, Anne Jorstad, et al. Data Management Plan (DMP): A Supervised Machine Learning Approach for Assessing Grant Peer Review Reports. Swiss National Science Foundation, 2024. http://dx.doi.org/10.46446/dmp-peer-review-assessment-ml.
Full textNickerson, Jeffrey, Kalle Lyytinen, and John L. King. Automated Vehicles: A Human/Machine Co-learning Perspective. SAE International, 2022. http://dx.doi.org/10.4271/epr2022009.
Full textBusch, Ella, and Jacob Ware. The Weaponization of Deepfakes: Digital Deception on the Far-Right. ICCT, 2023. http://dx.doi.org/10.19165/2023.2.07.
Full textAdegoke, Damilola, Natasha Chilambo, Adeoti Dipeolu, Ibrahim Machina, Ade Obafemi-Olopade, and Dolapo Yusuf. Public discourses and Engagement on Governance of Covid-19 in Ekiti State, Nigeria. African Leadership Center, King's College London, 2021. http://dx.doi.org/10.47697/lab.202101.
Full text