Academic literature on the topic 'Fake News detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fake News detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fake News detection"
Kumar, Aniket, Saurabh Kumar Pal, Kumar Dhruv Roy, and Mr Ragunthar T. "Fake News Detection." International Journal of Scientific & Engineering Research 11, no. 12 (December 25, 2020): 575–80. http://dx.doi.org/10.14299/ijser.2020.12.09.
Full textChu, Samuel Kai Wah, Runbin Xie, and Yanshu Wang. "Cross-Language Fake News Detection." Data and Information Management 5, no. 1 (November 20, 2020): 100–109. http://dx.doi.org/10.2478/dim-2020-0025.
Full textKarnyoto, Andrea, Chengjie Sun, Bingquan Liu, and Xiaolong Wang. "Transfer learning and GRU-CRF augmentation for COVID-19 fake news detection." Computer Science and Information Systems, no. 00 (2021): 53. http://dx.doi.org/10.2298/csis210501053k.
Full textSegura-Bedmar, Isabel, and Santiago Alonso-Bartolome. "Multimodal Fake News Detection." Information 13, no. 6 (June 2, 2022): 284. http://dx.doi.org/10.3390/info13060284.
Full textNagalakshmi, E. V., E. Sai Vineeth, Y. Goutham, and T. Vamshi Krishna. "Fake News Detection using Machine Learning - A Working Model of Fake News Detection." International Journal for Research in Applied Science and Engineering Technology 11, no. 5 (May 31, 2023): 1540–48. http://dx.doi.org/10.22214/ijraset.2023.51637.
Full textOyeniyi, Samuel A., and Joseph A. Ojeniyi. "DEVELOPMENT OF A CONCEPTUAL FRAMEWORK AND A MEASUREMENT MODEL FOR THE DETECTION OF FAKE NEWS." International Journal of Innovative Research in Advanced Engineering 8, no. 7 (July 30, 2021): 138–47. http://dx.doi.org/10.26562/ijirae.2021.v0807.001.
Full textSharma, Udit. "Fake News Detection Using ML." International Journal for Research in Applied Science and Engineering Technology 9, no. VII (July 31, 2021): 3668–74. http://dx.doi.org/10.22214/ijraset.2021.37209.
Full textNaik, Samrudhi. "Fake News Detection Using NLP." International Journal for Research in Applied Science and Engineering Technology 9, no. 12 (December 31, 2021): 2022–31. http://dx.doi.org/10.22214/ijraset.2021.39582.
Full textZhou, Xinyi, Atishay Jain, Vir V. Phoha, and Reza Zafarani. "Fake News Early Detection." Digital Threats: Research and Practice 1, no. 2 (July 9, 2020): 1–25. http://dx.doi.org/10.1145/3377478.
Full textShu, Kai, Deepak Mahudeswaran, Suhang Wang, and Huan Liu. "Hierarchical Propagation Networks for Fake News Detection: Investigation and Exploitation." Proceedings of the International AAAI Conference on Web and Social Media 14 (May 26, 2020): 626–37. http://dx.doi.org/10.1609/icwsm.v14i1.7329.
Full textDissertations / Theses on the topic "Fake News detection"
Nordberg, Pontus. "Automatic fake news detection." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-18512.
Full textO'Brien, Nicole (Nicole J. ). "Machine learning for detection of fake news." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119727.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 55-56).
Recent political events have lead to an increase in the popularity and spread of fake news. As demonstrated by the widespread effects of the large onset of fake news, humans are inconsistent if not outright poor detectors of fake news. With this, efforts have been made to automate the process of fake news detection. The most popular of such attempts include "blacklists" of sources and authors that are unreliable. While these tools are useful, in order to create a more complete end to end solution, we need to account for more difficult cases where reliable sources and authors release fake news. As such, the goal of this project was to create a tool for detecting the language patterns that characterize fake and real news through the use of machine learning and natural language processing techniques. The results of this project demonstrate the ability for machine learning to be useful in this task. We have built a model that catches many intuitive indications of real and fake news as well as an application that aids in the visualization of the classification decision.
by Nicole O'Brien.
M. Eng.
Asresu, Yohannes. "Defining fake news for algorithmic deception detection purposes." Thesis, Uppsala universitet, Institutionen för informatik och media, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-390393.
Full textRAJ, CHAHAT. "CONVOLUTIONAL NEURAL NETWORKERS FOR MULTIMODALS FAKE NEWS DETECTION." Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18816.
Full textKurasinski, Lukas. "Machine Learning explainability in text classification for Fake News detection." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20058.
Full textGhanem, Bilal Hisham Hasan. "On the Detection of False Information: From Rumors to Fake News." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/158570.
Full text[CA] En temps recents, el desenvolupament de les xarxes socials i de les agències de notícies han portat nous reptes i amenaces a la web. Aquestes amenaces han cridat l'atenció de la comunitat investigadora en Processament de Llenguatge Natural (PLN) ja que estan contaminant les plataformes de xarxes socials. Un exemple d'amenaça serien les notícies falses, en què els usuaris difonen i comparteixen informació falsa, inexacta o enganyosa. La informació falsa no es limita a la informació verificable, sinó que també inclou informació que s'utilitza amb fins nocius. A més, un dels desafiaments als quals s'enfronten els investigadors és la gran quantitat d'usuaris en les plataformes de xarxes socials, on detectar els difusors d'informació falsa no és tasca fàcil. Els treballs previs que s'han proposat per limitar o estudiar el tema de la detecció d'informació falsa s'han centrat en comprendre el llenguatge de la informació falsa des d'una perspectiva lingüística. En el cas d'informació verificable, aquests enfocaments s'han proposat en un entorn monolingüe. A més, gairebé no s'ha investigat la detecció de les fonts o els difusors d'informació falsa a les xarxes socials. En aquesta tesi estudiem la informació falsa des de diverses perspectives. En primer lloc, atès que els treballs anteriors es van centrar en l'estudi de la informació falsa en un entorn monolingüe, en aquesta tesi estudiem la informació falsa en un entorn multilingüe. Proposem diferents enfocaments multilingües i els comparem amb un conjunt de baselines monolingües. A més, proporcionem estudis sistemàtics per als resultats de l'avaluació dels nostres enfocaments per a una millor comprensió. En segon lloc, hem notat que el paper de la informació afectiva no s'ha investigat en profunditat. Per tant, la segona part del nostre treball de recerca estudia el paper de la informació afectiva en la informació falsa i mostra com els autors de contingut fals l'empren per manipular el lector. Aquí, investiguem diversos tipus d'informació falsa per comprendre la correlació entre la informació afectiva i cada tipus (Propaganda, Trucs / Enganys, Clickbait i Sàtira). Finalment, però no menys important, en un intent de limitar la seva propagació, també abordem el problema dels difusors d'informació falsa a les xarxes socials. En aquesta direcció de la investigació, ens enfoquem en explotar diverses característiques basades en text extretes dels missatges de perfils en línia de tals difusors. Estudiem diferents conjunts de característiques que poden tenir el potencial d'ajudar a discriminar entre difusors d'informació falsa i verificadors de fets.
[EN] In the recent years, the development of social media and online news agencies has brought several challenges and threats to the Web. These threats have taken the attention of the Natural Language Processing (NLP) research community as they are polluting the online social media platforms. One of the examples of these threats is false information, in which false, inaccurate, or deceptive information is spread and shared by online users. False information is not limited to verifiable information, but it also involves information that is used for harmful purposes. Also, one of the challenges that researchers have to face is the massive number of users in social media platforms, where detecting false information spreaders is not an easy job. Previous work that has been proposed for limiting or studying the issue of detecting false information has focused on understanding the language of false information from a linguistic perspective. In the case of verifiable information, approaches have been proposed in a monolingual setting. Moreover, detecting the sources or the spreaders of false information in social media has not been investigated much. In this thesis we study false information from several aspects. First, since previous work focused on studying false information in a monolingual setting, in this thesis we study false information in a cross-lingual one. We propose different cross-lingual approaches and we compare them to a set of monolingual baselines. Also, we provide systematic studies for the evaluation results of our approaches for better understanding. Second, we noticed that the role of affective information was not investigated in depth. Therefore, the second part of our research work studies the role of the affective information in false information and shows how the authors of false content use it to manipulate the reader. Here, we investigate several types of false information to understand the correlation between affective information and each type (Propaganda, Hoax, Clickbait, Rumor, and Satire). Last but not least, in an attempt to limit its spread, we also address the problem of detecting false information spreaders in social media. In this research direction, we focus on exploiting several text-based features extracted from the online profile messages of those spreaders. We study different feature sets that can have the potential to help to identify false information spreaders from fact checkers.
Ghanem, BHH. (2020). On the Detection of False Information: From Rumors to Fake News [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/158570
TESIS
Wan, Zhibin, and Huatai Xu. "Performance comparison of different machine learningmodels in detecting fake news." Thesis, Högskolan Dalarna, Institutionen för information och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:du-37576.
Full textFrimodig, Matilda, and Sivertsson Tom Lanhed. "A Comparative study of Knowledge Graph Embedding Models for use in Fake News Detection." Thesis, Malmö universitet, Institutionen för datavetenskap och medieteknik (DVMT), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-43228.
Full textShell, Joshua L. "Bots and Political Discourse: System Requirements and Proposed Methods of Bot Detection and Political Affiliation via Browser Plugin." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1592136507505369.
Full textAbdallah, Abdallah Sabry. "Investigation of New Techniques for Face detection." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/33191.
Full textMaster of Science
Books on the topic "Fake News detection"
Shu, Kai, and Huan Liu. Detecting Fake News on Social Media. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-031-01915-9.
Full textBook chapters on the topic "Fake News detection"
Palacio Marín, Ignacio, and David Arroyo. "Fake News Detection." In 13th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2020), 229–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57805-3_22.
Full textAbhishek, Satyam Kumar, and Manoj Kumar. "Fake News Detection." In Data Intelligence and Cognitive Informatics, 193–207. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6460-1_14.
Full textLong, Si Hong, and Mohd Pouzi Bin Hamzah. "Fake News Detection." In Lecture Notes in Electrical Engineering, 295–303. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4069-5_25.
Full textRaj, Ansuman Ravi, Lakshay Kaushik, Aamir Suhail, and B. Santhosh. "Fake News Detection." In Algorithms for Intelligent Systems, 829–37. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3485-0_65.
Full textChakraborty, Tanmoy. "Multi-modal Fake News Detection." In Data Science for Fake News, 41–70. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62696-9_3.
Full textSitaula, Niraj, Chilukuri K. Mohan, Jennifer Grygiel, Xinyi Zhou, and Reza Zafarani. "Credibility-Based Fake News Detection." In Lecture Notes in Social Networks, 163–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42699-6_9.
Full textVerma, Vijay, Mohit Rohilla, Anuj Sharma, and Mohit Gupta. "Fake News Detection on Twitter." In Advances in Data and Information Sciences, 141–49. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5292-0_13.
Full textMa, Fanghe, and Guoxian Tan. "NLP in Fake News Detection." In IRC-SET 2020, 71–83. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9472-4_6.
Full textTrivedi, Sainyali, Mayank Kumar Jain, Dinesh Gopalani, Yogesh Kumar Meena, and Yogendra Gupta. "Fake News Detection: A Study." In Algorithms for Intelligent Systems, 395–408. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1373-2_31.
Full textG, Santhosh Kumar. "Deep Learning for Fake News Detection." In Data Science for Fake News, 71–100. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62696-9_4.
Full textConference papers on the topic "Fake News detection"
Jain, Akshay, and Amey Kasbe. "Fake News Detection." In 2018 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS). IEEE, 2018. http://dx.doi.org/10.1109/sceecs.2018.8546944.
Full textNayagam, Selvanathan, Aakash Sankar, Abishek Shanmugasundaram, Akash Palanivel, and Liju Tonny Arokia Robert Raja. "Fake news detection." In 24TH TOPICAL CONFERENCE ON RADIO-FREQUENCY POWER IN PLASMAS. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0164646.
Full textIslam, Farzana, Mohammad Minhazul Alam, S. M. Shahadat Hossain, Abdul Motaleb, Sabrina Yeasmin, Mehedi Hasan, and Rashedur M. Rahman. "Bengali Fake News Detection." In 2020 IEEE 10th International Conference on Intelligent Systems (IS). IEEE, 2020. http://dx.doi.org/10.1109/is48319.2020.9199931.
Full textGangireddy, Siva Charan Reddy, Deepak P, Cheng Long, and Tanmoy Chakraborty. "Unsupervised Fake News Detection." In HT '20: 31st ACM Conference on Hypertext and Social Media. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3372923.3404783.
Full textSigmund, Tomáš. "STUDENTS' EVALUATION OF FAKE NEWS DETECTION AND COUNTERMEASURES AGAINST FAKE NEWS." In 14th International Conference on Education and New Learning Technologies. IATED, 2022. http://dx.doi.org/10.21125/edulearn.2022.0648.
Full textAmeli, Leila, Md Shah Alam Chowdhury, Farnaz Farid, Abubakar Bello, Fariza Sabrina, and Alana Maurushat. "AI and Fake News: A Conceptual Framework for Fake News Detection." In CSW 2022: 2022 International Conference on Cyber Security. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3584714.3584722.
Full textShaik, Mohammed Ali, Makkaji Yasha Sree, Sanka Sri Vyshnavi, Thogiti Ganesh, Dasari Sushmitha, and Narmetta Shreya. "Fake News Detection using NLP." In 2023 International Conference on Innovative Data Communication Technologies and Application (ICIDCA). IEEE, 2023. http://dx.doi.org/10.1109/icidca56705.2023.10100305.
Full textMajeed, Tabasum, Huma Farooq, Tabassum Jan, and Aabidah Nazir. "Fake News Detection: A Review." In Proceedings of the 3rd International Conference on ICT for Digital, Smart, and Sustainable Development, ICIDSSD 2022, 24-25 March 2022, New Delhi, India. EAI, 2023. http://dx.doi.org/10.4108/eai.24-3-2022.2318561.
Full textNguyen, Duc Minh, Tien Huu Do, Robert Calderbank, and Nikos Deligiannis. "Fake News Detection using Deep." In Proceedings of the 2019 Conference of the North. Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/n19-1141.
Full textDeshmukh, Ashwini Ashutosh, and Sharvari Govilkar. "Fake News Detection on Datasets." In 2022 5th International Conference on Advances in Science and Technology (ICAST). IEEE, 2022. http://dx.doi.org/10.1109/icast55766.2022.10039650.
Full textReports on the topic "Fake News detection"
Graham, Timothy, and Katherine M. FitzGerald. Bots, Fake News and Election Conspiracies: Disinformation During the Republican Primary Debate and the Trump Interview. Queensland University of Technology, 2023. http://dx.doi.org/10.5204/rep.eprints.242533.
Full textHedrick, Ronald, and Herve Bercovier. Characterization and Control of KHV, A New Herpes Viral Pathogen of Koi and Common Carp. United States Department of Agriculture, January 2004. http://dx.doi.org/10.32747/2004.7695871.bard.
Full textDoo, Johnny. Unsettled Issues Concerning eVTOL for Rapid-response, On-demand Firefighting. SAE International, August 2021. http://dx.doi.org/10.4271/epr2021017.
Full textPerk, Simon, Egbert Mundt, Alexander Panshin, Irit Davidson, Irina Shkoda, Ameera AlTori, and Maricarmen Garcia. Characterization and Control Strategies of Low Pathogenic Avian Influenza Virus H9N2. United States Department of Agriculture, November 2012. http://dx.doi.org/10.32747/2012.7697117.bard.
Full textBryant, C. A., S. A. Wilks, and C. W. Keevil. Survival of SARS-CoV-2 on the surfaces of food and food packaging materials. Food Standards Agency, November 2022. http://dx.doi.org/10.46756/sci.fsa.kww583.
Full textEuropean experts develop a new framework to screen early ASD. ACAMH, May 2018. http://dx.doi.org/10.13056/acamh.10551.
Full text