Dissertations / Theses on the topic 'Fake News detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 27 dissertations / theses for your research on the topic 'Fake News detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Nordberg, Pontus. "Automatic fake news detection." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-18512.
Full textO'Brien, Nicole (Nicole J. ). "Machine learning for detection of fake news." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119727.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 55-56).
Recent political events have lead to an increase in the popularity and spread of fake news. As demonstrated by the widespread effects of the large onset of fake news, humans are inconsistent if not outright poor detectors of fake news. With this, efforts have been made to automate the process of fake news detection. The most popular of such attempts include "blacklists" of sources and authors that are unreliable. While these tools are useful, in order to create a more complete end to end solution, we need to account for more difficult cases where reliable sources and authors release fake news. As such, the goal of this project was to create a tool for detecting the language patterns that characterize fake and real news through the use of machine learning and natural language processing techniques. The results of this project demonstrate the ability for machine learning to be useful in this task. We have built a model that catches many intuitive indications of real and fake news as well as an application that aids in the visualization of the classification decision.
by Nicole O'Brien.
M. Eng.
Asresu, Yohannes. "Defining fake news for algorithmic deception detection purposes." Thesis, Uppsala universitet, Institutionen för informatik och media, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-390393.
Full textRAJ, CHAHAT. "CONVOLUTIONAL NEURAL NETWORKERS FOR MULTIMODALS FAKE NEWS DETECTION." Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18816.
Full textKurasinski, Lukas. "Machine Learning explainability in text classification for Fake News detection." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20058.
Full textGhanem, Bilal Hisham Hasan. "On the Detection of False Information: From Rumors to Fake News." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/158570.
Full text[CA] En temps recents, el desenvolupament de les xarxes socials i de les agències de notícies han portat nous reptes i amenaces a la web. Aquestes amenaces han cridat l'atenció de la comunitat investigadora en Processament de Llenguatge Natural (PLN) ja que estan contaminant les plataformes de xarxes socials. Un exemple d'amenaça serien les notícies falses, en què els usuaris difonen i comparteixen informació falsa, inexacta o enganyosa. La informació falsa no es limita a la informació verificable, sinó que també inclou informació que s'utilitza amb fins nocius. A més, un dels desafiaments als quals s'enfronten els investigadors és la gran quantitat d'usuaris en les plataformes de xarxes socials, on detectar els difusors d'informació falsa no és tasca fàcil. Els treballs previs que s'han proposat per limitar o estudiar el tema de la detecció d'informació falsa s'han centrat en comprendre el llenguatge de la informació falsa des d'una perspectiva lingüística. En el cas d'informació verificable, aquests enfocaments s'han proposat en un entorn monolingüe. A més, gairebé no s'ha investigat la detecció de les fonts o els difusors d'informació falsa a les xarxes socials. En aquesta tesi estudiem la informació falsa des de diverses perspectives. En primer lloc, atès que els treballs anteriors es van centrar en l'estudi de la informació falsa en un entorn monolingüe, en aquesta tesi estudiem la informació falsa en un entorn multilingüe. Proposem diferents enfocaments multilingües i els comparem amb un conjunt de baselines monolingües. A més, proporcionem estudis sistemàtics per als resultats de l'avaluació dels nostres enfocaments per a una millor comprensió. En segon lloc, hem notat que el paper de la informació afectiva no s'ha investigat en profunditat. Per tant, la segona part del nostre treball de recerca estudia el paper de la informació afectiva en la informació falsa i mostra com els autors de contingut fals l'empren per manipular el lector. Aquí, investiguem diversos tipus d'informació falsa per comprendre la correlació entre la informació afectiva i cada tipus (Propaganda, Trucs / Enganys, Clickbait i Sàtira). Finalment, però no menys important, en un intent de limitar la seva propagació, també abordem el problema dels difusors d'informació falsa a les xarxes socials. En aquesta direcció de la investigació, ens enfoquem en explotar diverses característiques basades en text extretes dels missatges de perfils en línia de tals difusors. Estudiem diferents conjunts de característiques que poden tenir el potencial d'ajudar a discriminar entre difusors d'informació falsa i verificadors de fets.
[EN] In the recent years, the development of social media and online news agencies has brought several challenges and threats to the Web. These threats have taken the attention of the Natural Language Processing (NLP) research community as they are polluting the online social media platforms. One of the examples of these threats is false information, in which false, inaccurate, or deceptive information is spread and shared by online users. False information is not limited to verifiable information, but it also involves information that is used for harmful purposes. Also, one of the challenges that researchers have to face is the massive number of users in social media platforms, where detecting false information spreaders is not an easy job. Previous work that has been proposed for limiting or studying the issue of detecting false information has focused on understanding the language of false information from a linguistic perspective. In the case of verifiable information, approaches have been proposed in a monolingual setting. Moreover, detecting the sources or the spreaders of false information in social media has not been investigated much. In this thesis we study false information from several aspects. First, since previous work focused on studying false information in a monolingual setting, in this thesis we study false information in a cross-lingual one. We propose different cross-lingual approaches and we compare them to a set of monolingual baselines. Also, we provide systematic studies for the evaluation results of our approaches for better understanding. Second, we noticed that the role of affective information was not investigated in depth. Therefore, the second part of our research work studies the role of the affective information in false information and shows how the authors of false content use it to manipulate the reader. Here, we investigate several types of false information to understand the correlation between affective information and each type (Propaganda, Hoax, Clickbait, Rumor, and Satire). Last but not least, in an attempt to limit its spread, we also address the problem of detecting false information spreaders in social media. In this research direction, we focus on exploiting several text-based features extracted from the online profile messages of those spreaders. We study different feature sets that can have the potential to help to identify false information spreaders from fact checkers.
Ghanem, BHH. (2020). On the Detection of False Information: From Rumors to Fake News [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/158570
TESIS
Wan, Zhibin, and Huatai Xu. "Performance comparison of different machine learningmodels in detecting fake news." Thesis, Högskolan Dalarna, Institutionen för information och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:du-37576.
Full textFrimodig, Matilda, and Sivertsson Tom Lanhed. "A Comparative study of Knowledge Graph Embedding Models for use in Fake News Detection." Thesis, Malmö universitet, Institutionen för datavetenskap och medieteknik (DVMT), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-43228.
Full textShell, Joshua L. "Bots and Political Discourse: System Requirements and Proposed Methods of Bot Detection and Political Affiliation via Browser Plugin." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1592136507505369.
Full textAbdallah, Abdallah Sabry. "Investigation of New Techniques for Face detection." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/33191.
Full textMaster of Science
Svärd, Mikael, and Philip Rumman. "COMBATING DISINFORMATION : Detecting fake news with linguistic models and classification algorithms." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209755.
Full textSyftet med denna studie är att undersöka möjligheten att på ett pålitligt sättskilja mellan fabricerade och autentiska nyheter med hjälp av Naive bayesalgoritmer,detta involverar en komparativ studie mellan två olika typer avalgoritmer. Arbetet innehåller även en översikt över hur lingvistisk textanalyskan användas för detektion och ett försök gjordes att extrahera information medhjälp av ordfrekvenser. Det förs även en diskussion kring hur de olika aktörernaoch parterna inom näringsliv och regeringar påverkas av och hur de hanterarbedrägeri kopplat till falska nyheter. Studien försöker vidare undersöka vilkasteg som kan tas mot en fungerande lösning för att motarbeta falska nyheter. Algoritmernagav i slutändan otillfredställande resultat och ordfrekvenserna kundeinte ensamma ge nog med information. De tycktes dock potentiellt användbarasom en del i ett större maskineri av algoritmer och strategier ämnade att hanteradesinformation.
LI, Songyu. "A New Hands-free Face to Face Video Communication Method : Profile based frontal face video reconstruction." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-152457.
Full textGómez, Castellà Cristina 1985. "Improving detection capabilities of doping agents by identification of new phase I and phase II metabolites by LC-MS/MS." Doctoral thesis, Universitat Pompeu Fabra, 2014. http://hdl.handle.net/10803/132539.
Full textEls estudis metabòlics de substàncies dopants han estat tradicionalment realitzats mitjançant l’ús de cromatografia de gasos acoblada a espectrometria de masses (GC-MS). En els últims anys, s’ha demostrat la utilitat de la cromatografia líquida acoblada a espectrometria de masses (LC-MS) per realitzar estudis de metabolisme. L’objectiu d’aquesta tesi va ser estudiar el metabolisme (fase I i fase II) de diferents substàncies dopants mitjançant LC-MS/MS per tal de millorar la capacitat de detecció dels compostos estudiats. Per a mesocarb, compost termolàbil, es van detectar en orina el compost inalterat i 19 metabòlits incloent metabòlits mono-, di- i tri-hidroxilats excretats lliures o conjugats amb àcid glucurònic i sulfat. Per a toremifè, un fàrmac anti-estrogènic amb espectre de masses d’impacte electrònic amb pocs ions diganòstic, es van detectar el compost inalterat i 20 metabòlits en orina. Es va proposar l’estructura de la major part de metabòlits detectats. Per tal de millorar la retrospectivitat de la detecció dels esteroides anabolitzants androgènics (AAS) es van estudiar els metabòlits conjugats amb sulfat. Es va realitzar un estudi de la hidròlisi i del comportament espectromètric dels metabòlits conjugats amb sulfat dels AAS. Es van estudiar els metabòlits conjugats amb sulfat de boldenona, metiltestosterona i metandienona. Es van identificar boldenona sulfat i epiboldenona sulfat com a metabòlits de boldenona en humans. Aquests metabòlits poden ser usats com a marcadors de l’administració exògena de boldenona. Per a metiltestosterona, es van detectar i proposar les estructures de tres nous metabòlits conjugats amb sulfat. Un d’ells, el 17β-metil-5α-androstà-3α,17α-diol 3α-sulfat, va ser detectat en orina fins a 21 dies després de l’administració de metiltestosterona. Es van detectar diversos metabòlits de metandienona conjugats amb sulfat no descrits prèviament. Un d’ells, identificat com a 18-nor-17β-hidroximetil-17α-metilandrost-1,4,13-trien-3-ona conjugat amb sulfat, va ser detectat fins 26 dies després de l’administració. Tant per a metiltestosterone com per a metandienone, els metabòlits conjugats amb sulfat permeten millorar la retrospectivitat de la detecció respecte a altres marcadors descrits anteriorment. S’ha demostrat la utilitat del LC-MS/MS per a la detecció i caracterització de metabòlits de substàncies dopants, especialment per a l’estudi de nous metabòlits de fase II i per a estudis de metabolisme de compostos que mostren limitacions en GC-MS.
CHEN, PO-HONG, and 陳柏宏. "Text Analysis and Detection on Fake News." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/bv337x.
Full text國立雲林科技大學
資訊工程系
106
In general, the features of fake news are almost the same as those of real news, so it is not easy to identify them. In this paper, we propose a fake news detection system using a deep learning model. First, news articles are preprocessed and analyzed based on different training models. Then, an ensemble learning model combining four different models called embedding LSTM, depth LSTM, LIWC CNN, and N-gram CNN is proposed for fake news detection. Besides, to achieve high accuracy of detecting fake news, the optimized weights of the ensemble learning model are determined using the Self-Adaptive Harmony Search (SAHS) algorithm. In the experiments, we verify that the proposed model is superior to the state-of-the-art methods, with the highest accuracy 99.4%. Furthermore, we also investigate the crossdomain intangibility issue and achieve the highest accuracy 72.3%. Finally, we believe there is still room for improving the ensemble learning model in addressing the crossdomain intangibility issue.
Moura, Ricardo Ribeiro Sanfins. "Automated Fake News detection using computational Forensic Linguistics." Master's thesis, 2021. https://hdl.handle.net/10216/135505.
Full textMoura, Ricardo Ribeiro Sanfins. "Automated Fake News detection using computational Forensic Linguistics." Dissertação, 2021. https://hdl.handle.net/10216/135505.
Full textChau, Ying-Hung, and 周瑩紅. "Detection of Fake News Using BERT with Sentiment Analysis." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/8gwvn5.
Full text國立臺灣科技大學
資訊管理系
107
Fake news has become a hot-button issue and received tremendous attention since the 2016 U.S. presidential election. Although ‘fake news’ is an old problem that has been existed for centuries, today’s technology enables the spread of misinformation easier than ever. The internet and social media are the great enablers of the rise of fake news in recent years. The spread of fake news will definitely continue to cause negative impacts on individuals and society. Since most of the fake news revolve around politics, this research is therefore focused on political news. The more worrying trend is fake news can be generated automatically by machine. Early this year, a company named OpenAI has created an artificial intelligence system called GPT2, that is capable to generate coherent sentences, fiction and even fake news by just giving the system a block of text. Based on the above observation, detecting political fake news by text content is the main focus of this paper. Bidirectional Encoder Representations from Transformers (BERT) is one of the hottest open-sourced technique for natural language processing(NLP), that Google AI released last year. It has achieved great performance on a variety of NLP tasks, including question answering, classification and others. As BERT is a crucial technique for NLP tasks, this thesis proposed a fake news detection algorithm based on BERT pre-trained language model. The experimental analysis by using BERT shows the competitive performance for fake news detection on FakeNewsNet over other models. According to previous studies, negative and subjective terms are often used in fake news. Sentiment analysis is therefore considered as an important element for classifying news types in this research. It is shown that sentiment analysis can strengthen the BERT model for detecting fake news.
RAVISH. "AN EFFECTIVE OPTIMIZED FAKE NEWS DETECTION SYSTEM BASED ON MACHINE LEARNING TECHNIQUES." Thesis, 2022. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19166.
Full textBondielli, Alessandro. "Combining natural language processing and machine learning for profiling and fake news detection." Doctoral thesis, 2021. http://hdl.handle.net/2158/1244287.
Full textBarros, Maria Francisca de Sousa e. Alvim Lima de. "Fake news: characterization of different individual profiles in relation to different news topics." Master's thesis, 2022. http://hdl.handle.net/10362/133068.
Full textThe existence of fake news is an extremely topical concern which calls into question the veracity of the broadcasted information. Since nowadays the search and production of news is mainly done online, the costs with content production are low and the content’s reach and speed of propagation is very high. These factors facilitate the dissemination of fake news in social platforms that are not specialized means of communication, namely in online social networks. Therefore, this study aims to characterize different profiles of Portuguese individuals based on their susceptibility to several news topics. The attainment of the mentioned profiles is going to be a valuable contribution to information management and it is going to allow future definition of measures to mitigate the propagation of fake news in social platforms. To achieve this, critical literature review was done and accompanied by the creation of a survey to analyze how academic background and topic of the news pieces influence the accuracy of individuals identifying false news. This dissertation intents to understand if there is anyone immune to fake news, or if individuals can be more or less immune depending on the topic.
"Hidden Fear: Evaluating the Effectiveness of Messages on Social Media." Master's thesis, 2020. http://hdl.handle.net/2286/R.I.57340.
Full textDissertation/Thesis
Masters Thesis Computer Science 2020
Elhaddad, Mohamed Kamel Abdelsalam. "Web mining for social network analysis." Thesis, 2021. http://hdl.handle.net/1828/13219.
Full textGraduate
Ahmed, Hadeer. "Detecting opinion spam and fake news using n-gram analysis and semantic similarity." Thesis, 2017. https://dspace.library.uvic.ca//handle/1828/8796.
Full textGraduate
Tsai, Chung-Chih, and 蔡忠志. "A New Feature Set for Face Detection." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/25044260112501168862.
Full text國立清華大學
資訊系統與應用研究所
93
Viola and Jones introduce a fast face detection system which uses a cascaded structure that can achieve high detection rate and low false positive rate. Their system uses integral images to compute values from features. This thesis introduces two new types of integral images which are called triangle integral images and two corresponding features which are named triangle features. And this thesis proposes a method to lower training error by modifying Discrete AdaBoost. As results, to use triangle features can decrease the numbers of features; this research achieves lower false positive rate and fewer features are used.
Fu, Jing-Tong, and 傅靖桐. "New Face Detection Method Based on Multi-Scale Histograms." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/67401742207564243666.
Full text亞洲大學
資訊工程學系
104
As the technology improves every day, the smart society has become an inexorable trend. With the development of face detection and face recognition, the quality of human life has been dramatically promoted. Face detection and face recognition has been used in many applications, such as intelligent video surveillance, access control system and people counting. Therefore, the applications of face detection and face recognition play important roles in our daily lives. This thesis presents a new face detection method which is based on multi-scale histograms. The proposed method adopts a texture descriptor with a coarse to fine, structure representing the characteristics of face texture through constructing multi-scale histograms. Compared with the LBP method, the proposed method in this thesis can achieve similar detecting precision and is validated by the result of experiments. Furthermore, the proposed method is more efficient in computational cost than LBP method. The proposed method is close to ten times faster than LBP method when the block size is set to 4╳4.
Serre, Thomas, Lior Wolf, and Tomaso Poggio. "A new biologically motivated framework for robust object recognition." 2004. http://hdl.handle.net/1721.1/30504.
Full textBarczak, Andre Luis Chautard. "Feature-based rapid object detection : from feature extraction to parallelisation : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Sciences at Massey University, Auckland, New Zealand." 2007. http://hdl.handle.net/10179/742.
Full text