Academic literature on the topic 'Faltning'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Faltning.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Faltning"

1

Ashfaq, Awais. "Segmentation of Cone Beam CT in Stereotactic Radiosurgery." Thesis, KTH, Skolan för teknik och hälsa (STH), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-193107.

Full text
Abstract:
C-arm Cone Beam CT (CBCT) systems – due to compact size, flexible geometry and low radiation exposure – inaugurated the era of on-board 3D image guidance in therapeutic and surgical procedures. Leksell Gamma Knife Icon by Elekta introduced an integrated CBCT system to determine patient position prior to surgical session, thus advancing to a paradigm shift in facilitating frameless stereotactic radiosurgeries. While CBCT offers a quick imaging facility with high spatial accuracy, the quantitative values tend to be distorted due to various physics based artifacts such as scatter, beam hardening and cone beam effect. Several 3D reconstruction algorithms targeting these artifacts involve an accurate and fast segmentation of craniofacial CBCT images into air, tissue and bone. The objective of the thesis is to investigate the performance of deep learning based convolutional neural networks (CNN) in relation to conventional image processing and machine learning algorithms in segmenting CBCT images. CBCT data for training and testing procedures was provided by Elekta. A framework of segmentation algorithms including multilevel automatic thresholding, fuzzy clustering, multilayer perceptron and CNN is developed and tested against pre-defined evaluation metrics carrying pixel-wise prediction accuracy, statistical tests and execution times among others. CNN has proven its ability to outperform other segmentation algorithms throughout the evaluation metrics except for execution times. Mean segmentation error for CNN is found to be 0.4% with a standard deviation of 0.07%, followed by fuzzy clustering with mean segmentation error of 0.8% and a standard deviation of 0.12%. CNN based segmentation takes 500s compared to multilevel thresholding which requires ~1s on similar sized CBCT image. The present work demonstrates the ability of CNN in handling artifacts and noise in CBCT images and maintaining a high semantic segmentation performance. However, further efforts targeting CNN execution speed are required to utilize the segmentation framework within real-time 3D reconstruction algorithms.
C-arm Cone Beam CT (CBCT) system har tack vare sitt kompakta format, flexibla geometri och låga strålningsdos startat en era av inbyggda 3D bildtagningssystem för styrning av terapeutiska och kirurgiska ingripanden. Elektas Leksell Gamma Knife Icon introducerade ett integrerat CBCT-system för att bestämma patientens position för operationer och på så sätt gå in i en paradigm av ramlös stereotaktisk strålkirurgi. Även om CBCT erbjuder snabb bildtagning med hög spatiel noggrannhet så tenderar de kvantitativa värdena att störas av olika artefakter som spridning, beam hardening och cone beam effekten. Ett flertal 3D rekonstruktionsalgorithmer som försöker reducera dessa artefakter kräver en noggrann och snabb segmentering av kraniofaciala CBCT-bilder i luft, mjukvävnad och ben. Målet med den här avhandlingen är att undersöka hur djupa neurala nätverk baserade på faltning (convolutional neural networks, CNN) presterar i jämförelse med konventionella bildbehandlings- och maskininlärningalgorithmer för segmentering av CBCT-bilder. CBCT-data för träning och testning tillhandahölls av Elekta. Ett ramverk för segmenteringsalgorithmer inklusive flernivåströskling (multilevel automatic thresholding), suddig klustring (fuzzy clustering), flerlagersperceptroner (multilayer perceptron) och CNN utvecklas och testas mot fördefinerade utvärderingskriterier som pixelvis noggrannhet, statistiska tester och körtid. CNN presterade bäst i alla metriker förutom körtid. Det genomsnittliga segmenteringsfelet för CNN var 0.4% med en standardavvikelse på 0.07%, följt av suddig klustring med ett medelfel på 0.8% och en standardavvikelse på 0.12%. CNN kräver 500 sekunder jämfört med ungefär 1 sekund för den snabbaste algorithmen, flernivåströskling på lika stora CBCT-volymer. Arbetet visar CNNs förmåga att handera artefakter och brus i CBCT-bilder och bibehålla en högkvalitativ semantisk segmentering. Vidare arbete behövs dock för att förbättra presetandan hos algorithmen för att metoden ska vara applicerbar i realtidsrekonstruktionsalgorithmer.
APA, Harvard, Vancouver, ISO, and other styles
2

Kaalen, Stefan. "Semi-Markov processes for calculating the safety of autonomous vehicles." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252331.

Full text
Abstract:
Several manufacturers of road vehicles today are working on developing autonomous vehicles. One subject that is often up for discussion when it comes to integrating autonomous road vehicles into the infrastructure is the safety aspect. There is in the context no common view of how safety should be quantified. As a contribution to this discussion we propose describing each potential hazardous event of a vehicle as a Semi-Markov Process (SMP). A reliability-based method for using the semi-Markov representation to calculate the probability of a hazardous event to occur is presented. The method simplifies the expression for the reliability using the Laplace-Stieltjes transform and calculates the transform of the reliability exactly. Numerical inversion algorithms are then applied to approximate the reliability up to a desired error tolerance. The method is validated using alternative techniques and is thereafter applied to a system for automated steering based on a real example from the industry. A desired evolution of the method is to involve a framework for how to represent each hazardous event as a SMP.
Flertalet tillverkare av vägfordon jobbar idag på att utveckla autonoma fordon. Ett ämne ofta på agendan i diskussionen om att integrera autonoma fordon på vägarna är säkerhet. Det finns i sammanhanget ingen klar bild över hur säkerhet ska kvantifieras. Som ett bidrag till denna diskussion föreslås här att beskriva varje potentiellt farlig situation av ett fordon som en Semi-Markov process (SMP). En metod presenteras för att via beräkning av funktionssäkerheten nyttja semi-Markov representationen för att beräkna sannolikheten för att en farlig situation ska uppstå. Metoden nyttjar Laplace-Stieltjes transformen för att förenkla uttrycket för funktionssäkerheten och beräknar transformen av funktionssäkerheten exakt. Numeriska algoritmer för den inversa transformen appliceras sedan för att beräkna funktionssäkerheten upp till en viss feltolerans. Metoden valideras genom alternativa tekniker och appliceras sedan på ett system för autonom styrning baserat på ett riktigt exempel från industrin. En fördelaktig utveckling av metoden som presenteras här skulle vara att involvera ett ramverk för hur varje potentiellt farlig situation ska representeras som en SMP.
APA, Harvard, Vancouver, ISO, and other styles
3

Wickman, Axel. "Exploring feasibility of reinforcement learning flight route planning." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-178314.

Full text
Abstract:
This thesis explores and compares traditional and reinforcement learning (RL) methods of performing 2D flight path planning in 3D space. A wide overview of natural, classic, and learning approaches to planning s done in conjunction with a review of some general recurring problems and tradeoffs that appear within planning. This general background then serves as a basis for motivating different possible solutions for this specific problem. These solutions are implemented, together with a testbed inform of a parallelizable simulation environment. This environment makes use of random world generation and physics combined with an aerodynamical model. An A* planner, a local RL planner, and a global RL planner are developed and compared against each other in terms of performance, speed, and general behavior. An autopilot model is also trained and used both to measure flight feasibility and to constrain the planners to followable paths. All planners were partially successful, with the global planner exhibiting the highest overall performance. The RL planners were also found to be more reliable in terms of both speed and followability because of their ability to leave difficult decisions to the autopilot. From this it is concluded that machine learning in general, and reinforcement learning in particular, is a promising future avenue for solving the problem of flight route planning in dangerous environments.
APA, Harvard, Vancouver, ISO, and other styles
4

Linder, Johannes. "Modeling the intronic regulation of Alternative Splicing using Deep Convolutional Neural Nets." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172327.

Full text
Abstract:
This paper investigates the use of deep Convolutional Neural Networks for modeling the intronic regulation of Alternative Splicing on the basis of DNA sequence. By training the CNN on massively parallel synthetic DNA libraries of Alternative 5'-splicing and Alternatively Skipped exon events, the model is capable of predicting the relative abundance of alternatively spliced mRNA isoforms on held-out library data to a very high accuracy (R2 = 0.77 for Alt. 5'-splicing). Furthermore, the CNN is shown to generalize alternative splicing across cell lines efficiently. The Convolutional Neural Net is tested against a Logistic regression model and the results show that while prediction accuracy on the synthetic library is notably higher compared to the LR model, the CNN is worse at generalizing to new intronic contexts. Tests on non-synthetic human SNP genes suggest the CNN is dependent on the relative position of the intronic region it was trained for, a problem which is alleviated with LR. The increased library prediction accuracy of the CNN compared to Logistic regression is concluded to come from the non-linearity introduced by the deep layer architecture. It adds the capacity to model complex regulatory interactions and combinatorial RBP effects which studies have shown largely affect alternative splicing. However, the architecture makes interpreting the CNN hard, as the regulatory interactions are encoded deep within the layers. Nevertheless, high-performance modeling of alternative splicing using CNNs may still prove useful in numerous Synthetic biology applications, for example to model differentially spliced genes as is done in this paper.
Den här uppsatsen undersöker hur djupa neurala nätverk baserade på faltning ("Convolutions") kan användas för att modellera den introniska regleringen av Alternativ Splicing med endast DNA-sekvensen som indata. Nätverket tränas på ett massivt parallelt bibliotek av syntetiskt DNA innehållandes Alternativa Splicing-event där delar av de introniska regionerna har randomiserats. Uppsatsen visar att nätverksarkitekturen kan förutspå den relativa mängden alternativt splicat RNA till en mycket hög noggrannhet inom det syntetiska biblioteket. Modellen generaliserar även alternativ splicing mellan mänskliga celltyper väl. Hursomhelst, tester på icke-syntetiska mänskliga gener med SNP-mutationer visar att nätverkets prestanda försämras när den introniska region som används som indata flyttas i jämförelse till den relativa position som modellen tränats på. Uppsatsen jämför modellen med Logistic regression och drar slutsatsen att nätverkets förbättrade prestanda grundar sig i dess förmåga att modellera icke-linjära beroenden i datan. Detta medför dock svårigheter i att tolka vad modellen faktiskt lärt sig, eftersom interaktionen mellan reglerande element är inbäddat i nätverkslagren. Trots det kan högpresterande modellering av alternativ splicing med hjälp av neurala nät vara användbart, exempelvis inom Syntetisk biologi där modellen kan användas för att kontrollera regleringen av splicing när man konstruerar syntetiska gener.
APA, Harvard, Vancouver, ISO, and other styles
5

Friberg, Oscar. "Recognizing Semantics in Human Actions with Object Detection." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212579.

Full text
Abstract:
Two-stream convolutional neural networks are currently one of the most successful approaches for human action recognition. The two-stream convolutional networks separates spatial and temporal information into a spatial stream and a temporal stream. The spatial stream accepts a single RGB frame, while the temporal stream accepts a sequence of optical flow. There have been attempts to further extend the work of the two-stream convolutional network framework. For instance there have been attempts to extend with a third network for auxiliary information, which this thesis mainly focuses on. We seek to extend the two-stream convolutional neural network by introducing a semantic stream by using object detection systems. Two contributions are made in thesis: First we show that this semantic stream can provide slight improvements over two-stream convolutional neural networks for human action recognition on standard benchmarks. Secondly, we attempt to seek divergence enhancements techniques to force our new semantic stream to complement the spatial and the temporal streams by modifying the loss function during training. Slight gains are seen using these divergence enhancement techniques.
Faltningsnätverk i två strömmar är just nu den mest lyckade tillvägagångsmetoden för mänsklig aktivitetsigenkänning, vilket delar upp rumslig och timlig information i en rumslig ström och en timlig ström. Den rumsliga strömmen tar emot individella RGB bildrutor för igenkänning, medan den timliga strömmen tar emot en sekvens av optisk flöde. Försök i att utöka ramverket för faltningsnätverk i två strömmar har gjorts i tidigare arbete. Till exempel har försök gjorts i att komplementera dessa två nätverk med ett tredje nätverk som tar emot extra information. I detta examensarbete söker vi metoder för att utöka faltningsnätverk i två strömmar genom att introducera en semantisk ström med objektdetektion. Vi gör i huvudsak två bidrag i detta examensarbete: Först visar vi att den semantiska strömmen tillsammans med den rumsliga strömmen och den timliga strömmen kan bidra till små förbättringar för mänsklig aktivitetsigenkänning i video på riktmärkesstandarder. För det andra söker vi efter divergensutökningstekniker som tvingar den semantiska strömme att komplementera de andra två strömmarna genom att modifiera förlustfunktionen under träning. Vi ser små förbättringar med att använda dessa tekniker för att öka divergens.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography