Academic literature on the topic 'Faradic current'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Faradic current.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Faradic current"
Shah, Anwar ul Haq Ali, Sadaf Zia, Gul Rahman, and Salma Bilal. "Performance Improvement of Gold Electrode towards Methanol Electrooxidation in Akaline Medium: Enhanced Current Density Achieved with Poly(aniline-co-2-hydroxyaniline) Coating at Low Overpotential." Polymers 14, no. 2 (January 13, 2022): 305. http://dx.doi.org/10.3390/polym14020305.
Full textBaumung, Max, Florian Schönewald, Torben Erichsen, Cynthia A. Volkert, and Marcel Risch. "Influence of particle size on the apparent electrocatalytic activity of LiMn2O4 for oxygen evolution." Sustainable Energy & Fuels 3, no. 9 (2019): 2218–26. http://dx.doi.org/10.1039/c8se00551f.
Full textAbbas, Syed Asad, Seong-Hoon Kim, Hamza Saleem, Sung-Hee Ahn, and Kwang-Deog Jung. "Preparation of Metal Amalgam Electrodes and Their Selective Electrocatalytic CO2 Reduction for Formate Production." Catalysts 9, no. 4 (April 18, 2019): 367. http://dx.doi.org/10.3390/catal9040367.
Full textZhu, Qing Jun, Alin Cao, Ji Wen Song, and Sheng Li Chen. "Distribution of Stray Current in Buried Pipeline." Advanced Materials Research 433-440 (January 2012): 6579–82. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.6579.
Full textTatu, Laurent. "Edgar Adrian (1889–1977) and Shell Shock Electrotherapy: A Forgotten History?" European Neurology 79, no. 1-2 (2018): 106–7. http://dx.doi.org/10.1159/000486762.
Full textKaplyanskiy, V. "C. Ludlow. The Use of Electricity in Midwifery (New-York Medical Journal, 1893: January 14). On the use of electricity in obstetrics." Journal of obstetrics and women's diseases 7, no. 5 (September 22, 2020): 428. http://dx.doi.org/10.17816/jowd75428.
Full textBodamyali, T., J. M. Kanczler, B. Simon, D. R. Blake, and C. R. Stevens. "Effect of Faradic Products on Direct Current-Stimulated Calvarial Organ Culture Calcium Levels." Biochemical and Biophysical Research Communications 264, no. 3 (November 1999): 657–61. http://dx.doi.org/10.1006/bbrc.1999.1355.
Full textMorón, Carlos, Enrique Tremps, Alfonso Garcia, and Jose Andrés Somolinos. "Development of an Electrochemical Maltose Biosensor." Key Engineering Materials 495 (November 2011): 116–19. http://dx.doi.org/10.4028/www.scientific.net/kem.495.116.
Full textAbdelatief, Emad Eldin Mohamed. "Effect of Transcutaneous Electrical Nerve Stimulation and Faradic Current Stimulation on the Recovery of Bell's Palsy." International Journal of Human Movement and Sports Sciences 8, no. 6 (December 2020): 369–79. http://dx.doi.org/10.13189/saj.2020.080608.
Full textجبر, Nasma Adnan, Aiyah Sabah نوري, Emad Eyad حسين, and Maha Adnan جبر. "A Review of Treatment Methods Using Electrical Stimulation." Journal of medical and pharmaceutical sciences 6, no. 6 (December 29, 2022): 1–16. http://dx.doi.org/10.26389/ajsrp.b040922.
Full textDissertations / Theses on the topic "Faradic current"
Li, Gongde. "Faraday current sensing using chromatic modulation." Thesis, University of Liverpool, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367273.
Full textSwafford, Robert D. "Development of a new generation of electric current sensors through advances in manufacturing techniques and material design." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50306.
Full textBabinet, Cyril. "Next generation of current sensors for aeronautics preliminary designs /." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/29709.
Full textCommittee Co-Chair: Dr. Jianmin Qu; Committee Co-Chair: Dr. Mohammed Cherkaoui; Committee Member: Dr. Christophe Giraud-Audine; Committee Member: Dr. Nico Declercq. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Berwick, M. "Investigations toward Faraday effect optical current sensors and optical fibre frequency shifters." Thesis, University of Kent, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.290423.
Full textAmin, M. Shahrooz 1981. "Advanced Faraday cage measurements of charge, short-circuit current and open-circuit voltage." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28730.
Full text"Spetember 2004."
Includes bibliographical references.
(cont.) above atmospheric pressure caused both positive current and negative current pulses with the negative pulse larger than the positive pulse. A pressure decrease of more than 10psi below atmospheric pressure also caused both positive current and negative current pulses with the positive current larger than the negative current pulse. Experiments showed that the negative current was generated by the galvanic action between the two dissimilar metals in the triaxial connector connecting the center electrode of the electrode chamber with the electrometer, as water condensed. Positive current could have been produced by the evaporation of moisture from the center electrode of the electrode chamber. Dew point analysis is performed to show that for water to condense on metallic surfaces, it is not necessary to reach the dew point. The calculated dew point temperature is lower than the temperature at which the water condenses upon the electrode surfaces. In the liquid and solid dielectric experiments, we use a patented Faraday cage which is composed of two identical in-line hollow, gold-plated Faraday cup electrodes that enclose the samples which move between them during each measurement under computer control. We conducted charge measurements using various electrometers to rule out the possibility of false instrument readings due to input offset voltage and other experimental effects. One wire mesh style of Faraday cage connected with an electrometer was also used to measure the charge. The liquid dielectrics are distilled water, tap water, Sargasso Sea water ...
This thesis is devoted to Faraday cage measurements of air, liquid, and solid dielectrics. Experiments use pressurized air with fixed Faraday cage electrodes, and a moving sample of liquid and solid dielectrics between two Faraday cup electrodes. Extensive experiments were conducted to understand the source of the unpredictable net measured charge. In the air experiment, the Faraday cage consists of a hollow, cylindrical, gold-plated brass electrode mounted within a gold-plated brass hermetic chamber that connects with earth ground. Measurements of transient current at various temperatures and humidity during transient air pressure change are presented. The flow of electrode current is shown not to be due to capacitance and input offset voltage changes, since the calculated value is on the order of 10⁻¹⁶ Amperes which is much less than the measured currents of order 10⁻¹³ Amperes. By controlling the internal relative humidity of air in the Faraday cage, and from the measurements of current using dry nitrogen, we confirm that the absence of moisture causes no current to flow. Amplitude of the measured current is found to be dependent upon the internal relative humidity. Repeatedly, polarity reversals were observed to occur, in part due to galvanic action between dissimilar metals as water condensed upon the insulating surface between them. At a low temperature with a small pressure change, only one pulse of current was observed to occur but, with a pressure change of more than l0psi, two opposite polarity pulses of current were shown to occur almost simultaneously. A small pressure increase only caused a pulse of negative current, and a small pressure decrease only caused a pulse of positive current. A pressure increase of more than l0psi
by M. Shahrooz Amin.
S.M.
Niewczas, Pawel. "Implementation of a Faraday Effect based optical current transducer using digital signal processing techniques." Thesis, University of Strathclyde, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248515.
Full textVande, Vyver Olivier. "Etude et mise au point d'une cellule à électrodes poreuses pour la récupération d'ions métalliques en solution." Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210558.
Full textParmi les électrodes poreuses, celles constituées de fibres métalliques semblent les plus prometteuses. L’objectif de ce travail est de donner les relations utiles pour dimensionner une cellule contenant ce type d’électrodes en vue du traitement d’effluents industriels contenant des ions métalliques.
Les électrodes étudiées ont été caractérisées par différentes techniques :microscopie électronique, méthode électrochimique, mesure de la perte de charge, conductimétrie, porosimétrie,… Cette caractérisation a permis de connaître la porosité, les surfaces spécifiques (géométrique, dynamique et électrochimique) et la tortuosité des électrodes.
Ensuite, le coefficient de transport de matière moyen a été étudié par une nouvelle méthode basée sur la mesure d’un rendement électrochimique. Cette méthode présente l’avantage de pouvoir travailler avec des vitesses de circulation de l’électrolyte compatibles avec celles utilisées industriellement. Pour cela, une cellule d’électrolyse à circulation forcée a été mise au point.
Afin de comprendre comment la géométrie d’une électrode poreuse de ce type influence le transport de matière local et la densité de courant et donc l’efficacité de l’électrode, le transport de matière et la densité de courant locale ont été modélisés autour d’un cylindre (représentatif d’une fibre) et validés par des mesures expérimentales. La modélisation s’est ensuite étendue à un réseau de fibres cylindriques représentatif des électrodes poreuses étudiées. Cette modélisation a permis d’obtenir une relation générale liant les nombres de Sherwood, de Reynolds et de Schmidt à des nombres sans dimension caractérisant la géométrie du réseau de fibres. Cette relation donne des résultats concordants avec ceux obtenus expérimentalement pour les électrodes poreuses étudiées.
Le volume utile d’une électrode poreuse dépend fortement des conditions expérimentales (concentration de l’électrolyte, vitesse de circulation, intensité du courant appliquée,…) et de la structure de l’électrode (porosité, surface spécifique,…). Ces paramètres influencent la distribution du potentiel et de la densité de courant dans l’électrode. Différents modèles de distribution sont comparés et appliqués aux électrodes poreuses étudiées. Cette distribution de courant influence le colmatage progressif de l’électrode poreuse en cours d’électrolyse. Il s’avère que l’électrode en contrôle diffusionnel (avec un rendement électrochimique faible) optimise la distribution du courant dans l’électrode et, de ce fait, ralenti son colmatage. De plus, travailler avec une solution diluée et une vitesse de circulation de l’électrolyte importante améliore la distribution du courant. Il en est de même si l’électrode poreuse présente une grande porosité et une faible surface spécifique.
Ce travail aura donc permis de proposer des relations indispensables pour le dimensionnement d’une cellule à électrodes poreuses (constituées de fibres métalliques) ainsi que les conditions opératoires idéales dans le cas du traitement d’effluents industriels contenant des ions métalliques./
Electrochemical techniques offer many advantages for the prevention of pollution problems in the industrial processes. However, flat electrodes are not ideal to treat dilute solutions containing metallic ions. With their high specific surface and open structure, which enhance mass transfer, porous electrodes are a good alternative for the treatment this kind of effluent. Fibre materials are particularly well suited as material for the production of porous electrodes.
The aim of this thesis is to study an electrochemical cell with a porous electrode in order to treat dilute metallic ions solutions and to provide dimensionless equations suited to scale-up the electrode for industrial application.
The porous electrodes, used in this thesis, are made of a stainless steel fibre network. The main properties and characteristics of these electrodes are studied by means of several techniques :electron microscopy, electrochemical methods (voltammetry, limiting current density measurerment), conductivity measurement, porosimetry, pressure drop measurement,… The obtained parameters are :porosity, specific surfaces (geometric, dynamic and electrochemical), fibres' diameter, tortuosity and the geometric disposition of the fibres in the electrodes. Mass transfer inside the porous electrodes is studied experimentally by a new developed method, linked to the measurement of the faradic yield as a function of different electrolysis parameters. For these measurements, an experimental electrolysis cell with high electrolyte flow rate has been designed and builds.
To understand how the geometry of the porous electrode influences the local and mean mass transfer coefficients and current densities, numerical studies and simulations have been performed.
The first type of simulation deals with a single wire (representative of a fibre from the porous electrode).
The second type of simulation deals with the integration of individual fibres in a fibre network. A correlation between dimensionless numbers such as Sherwood's, Reynolds' and Schmidt's numbers together with numbers characteristic of the electrode’s geometry has been established for Reynolds’s numbers ranging from 0,02 to 1,4. A good agreement between simulation and experimental measurements of mass transfer is observed.
The real effective electrochemical volume of the porous electrode depends on experimental conditions (current, concentration, flow velocity…) and electrode’s geometry (porosity, specific surface,…). These parameters influence the potential and current distribution inside the porous electrode. Several models of current distribution are applied to these electrodes and the theoretical simulations are compared with experimental measures.
As a result of these simulations, an electrode under diffusion control with a small faradic yield appears to be the best choice in order to homogenise the current density inside the porous electrodes. Dilute solutions, high flow velocity and electrodes with high porosity improve also the current density penetration inside the electrode. These observations are confirmed by an electrode’s plugging study.
In conclusion, this thesis provides mathematical relationships to scale-up a cell with porous electrodes of metallic fibre, and provides guidelines to treat, in an efficient manner industrial effluents containing metallic ions.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Karri, Avinash Wang Shuping. "Employment of dual frequency excitation method to improve the accuracy of an optical current sensor by measuring both current and temperature." [Denton, Tex.] : University of North Texas, 2008. http://digital.library.unt.edu/permalink/meta-dc-9766.
Full textTronko, V. D., M. O. Chuzha, В. Д. Тронько, and М. О. Чужа. "Measuring current in electrical circuits using a polarimeter." Thesis, National aviation university, 2021. https://er.nau.edu.ua/handle/NAU/50502.
Full textВ представленій роботі запропоновано оптичний пристрій для вимірювання струму. Він складається з поляриметра, індикатора та вхідного пристрою. В основу його роботи покладено функціональна залежність зміни параметрів поляризованого світла в поляриметрі від значень струму, що вимірюються. Запропонований вимірювач струму дає можливість зменшити габарити та масу конструкції, а також підвищити точність вимірювань.
Karri, Avinash. "Employment of dual frequency excitation method to improve the accuracy of an optical current sensor, by measuring both current and temperature." Thesis, University of North Texas, 2008. https://digital.library.unt.edu/ark:/67531/metadc9766/.
Full textBooks on the topic "Faradic current"
Zervas, Josef. Manual on the Treatment of Diseases by Electricity Employing the Faradic Current. Creative Media Partners, LLC, 2018.
Find full textZervas, Josef. Manual on the Treatment of Diseases by Electricity Employing the Faradic Current. Creative Media Partners, LLC, 2018.
Find full textManual on the Treatment of Diseases by Electricity Employing the Faradic Current. Creative Media Partners, LLC, 2022.
Find full textZervas, Josef. Manual on the Treatment of Diseases by Electricity Employing the Faradic Current. Creative Media Partners, LLC, 2018.
Find full textManual on the Treatment of Diseases by Electricity Employing the Faradic Current. Creative Media Partners, LLC, 2018.
Find full textBeard, George Miller, and Alphonso David Rockwell. A Practical Treatise On the Medical & Surgical Uses of Electricity. Arkose Press, 2015.
Find full textBeard, George Miller, and Alphonso David Rockwell. A Practical Treatise on the Medical and Surgical Uses of Electricity: Including Localized and General Faradization, Localized and Central ... Electrolysis and Galvano-Cautery. Franklin Classics Trade Press, 2018.
Find full textPractical Treatise on the Medical and Surgical Uses of Electricity: Including Localized and General Faradization, Localized and Central Galvanization, Franklinization, Electrolysis and Galvano-Cautery. Creative Media Partners, LLC, 2018.
Find full textBeard, George Miller, and Alphonso David Rockwell. A Practical Treatise On the Medical & Surgical Uses of Electricity: Including Localized and General Faradization; Localized and Central Galvanization; Electrolysis and Galvano-Cautery. Arkose Press, 2015.
Find full textBeard, George Miller, and Alphonso David Rockwell. Practical Treatise on the Medical and Surgical Uses of Electricity: Including Localized and General Faradization, Localized and Central Galvanization, Franklinization, Electrolysis and Galvano-Cautery. Creative Media Partners, LLC, 2018.
Find full textBook chapters on the topic "Faradic current"
Yates, John T. "Modified Faraday Cup for Electron Current Measurement." In Experimental Innovations in Surface Science, 300–301. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2304-7_91.
Full textBager, L., J. E. Schrøder, and C. J. Nielsen. "Fiber Optic Current Density Measurement Based on the Faraday Effect." In Springer Proceedings in Physics, 359–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-75088-5_54.
Full textFisher, Norman, and David Jackson. "Fiber-Link Vibration Immunity for an Extrinsic Faraday Current Sensor." In Applications of Photonic Technology 2, 855–61. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9250-8_129.
Full textKersey, A. D., and M. A. Davis. "All-Fiber Faraday-Rotation Current Sensor with Remote Laser-FM Based Heterodyne Detection." In Springer Proceedings in Physics, 285–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-75088-5_44.
Full textLi, Qiangqiang, Yanghui Zhang, Lili Shen, Ning Zhao, Tao Zhang, and Xiaoxia Sun. "The Effect of Leakage Current on the Performance of Proton-Conducting Solid Oxide Fuel Cells." In Advances in Energy Research and Development. IOS Press, 2022. http://dx.doi.org/10.3233/aerd220024.
Full textSpence, John C. H. "Faraday and Maxwell." In Lightspeed, 91–111. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198841968.003.0006.
Full textHolz, Laura I. V., Francisco J. A. Loureiro, Vanessa C. D. Graça, Allan J. M. Araújo, Diogo Mendes, Adélio Mendes, and Duncan P. Fagg. "Non-faradaic electrochemical modification of catalytic activity: A current overview." In Heterogeneous Catalysis, 515–30. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-323-85612-6.00019-x.
Full textFreeman, Richard, James King, and Gregory Lafyatis. "General Relations between Fields and Sources." In Electromagnetic Radiation, 63–84. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198726500.003.0003.
Full textKarakaş, M. Gürcan. "Rules of the Game are Changing: Automotive Turns Into Mobility Ecosystem." In National Technology Initiative: Social Reflections and Türkiye's Future, 287–302. Türkiye Bilimler Akademisi Yayınları, 2022. http://dx.doi.org/10.53478/tuba.978-625-8352-17-7.ch16.
Full textConference papers on the topic "Faradic current"
Shqau, Krenar, and Amy Heintz. "Mixed Ionic Electronic Conductors for Improved Charge Transport in Electrotherapeutic Devices." In 2017 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dmd2017-3454.
Full textIbrahim, I., M. Meyer, B. Tribollet, H. Takenouti, S. Joiret, S. Fontaine, and H. G. Scho¨neich. "On the Mechanism of AC Assisted Corrosion of Buried Pipelines and Its CP Mitigation." In 2008 7th International Pipeline Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ipc2008-64380.
Full textGuduru, Rakesh, Mohammed Uddin, and Nazmul Islam. "Optimization of an Electrokinetic Orthogonal Electrode Pattern for Multifunctional System." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67446.
Full textBhadra, R., and A. Acharyya. "A proposed DC line current measurement technique based on current induced magnetic field sensing using n-channel enhancement-type MOSFET." In Michael Faraday IET International Summit 2015. Institution of Engineering and Technology, 2015. http://dx.doi.org/10.1049/cp.2015.1648.
Full textKumar Mondal, A., T. Santra, S. Pramanik, and S. Sankar Saha. "A Dual Purpose Passive Magnetic Fault Current Limiter for Obtaining Variable Impedance and Current Suppression at Fault." In Michael Faraday IET International Summit 2020 (MFIIS 2020). Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/icp.2021.1059.
Full textMitchell, Stephen E. "Deconvolving Current from a Faraday Rotation Measurement." In 2007 IEEE Pulsed Power Plasma Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4345682.
Full textSone, Isamu. "Ring Glass Type Faraday Effect Current Sensor." In Optical Fiber Sensors. Washington, D.C.: OSA, 1996. http://dx.doi.org/10.1364/ofs.1996.ex33.
Full textYoshino, Toshihiko, Mikihiko Gojyuki, and Yoshitaka Takahashi. "High Isolation Bulk Faraday Effect Current Sensor." In Optical Fiber Sensors. Washington, D.C.: OSA, 1996. http://dx.doi.org/10.1364/ofs.1996.we330.
Full textNeyer, B. T., J. Chang, and L. E. Ruggles. "Calibrated Faraday Current And Magnetic Field Sensor." In 29th Annual Technical Symposium. SPIE, 1986. http://dx.doi.org/10.1117/12.949790.
Full textSarkar, D., D. Roy, A. Upadhyaya, and A. B. Choudhury. "Synthesis of Parameter Dependency Performance of Saturated Iron-Core Superconducting Fault Current Limiter." In Michael Faraday IET International Summit 2015. Institution of Engineering and Technology, 2015. http://dx.doi.org/10.1049/cp.2015.1628.
Full textReports on the topic "Faradic current"
Cernosek, R. W. High frequency current sensors using the Faraday effect in optical fibers. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10190503.
Full textLuc, Brunet. Systematic Equations Handbook : Book 1-Energy. R&D Médiation, May 2015. http://dx.doi.org/10.17601/rd_mediation2015:1.
Full text