Contents
Academic literature on the topic 'Faser-Matrix Verbund'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Faser-Matrix Verbund.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Faser-Matrix Verbund"
Banholzer, B., and W. Brameshuber. "Eine Methode zur Beschreibung des Verbundes zwischen Faser und zementgebundener Matrix." Beton- und Stahlbetonbau 96, no. 10 (October 2001): 663–69. http://dx.doi.org/10.1002/best.200100850.
Full textHofbauer, Daniel. "Herstellung endlosfaserverstärkter, thermoplastischer Halbzeuge für Karosseriestrukturbauteile in Großserie." Technologies for Lightweight Structures (TLS) 1, no. 1 (December 21, 2017). http://dx.doi.org/10.21935/tls.v1i1.75.
Full textDissertations / Theses on the topic "Faser-Matrix Verbund"
Azzam, Aussama, and Mike Richter. "Investigation of Stress Transfer Behavior in Textile Reinforced Concrete with Application to Reinforcement Overlapping and Development Lengths." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-77838.
Full textThis paper concerns with the investigation of stress transfer mechanisms between yarns and concrete matrix and their influence on the overall behavior of textile reinforced concrete (TRC). This investigation considers textile reinforcement splices and textile reinforcement development lengths and carried out by means of Finite-Element simulations and fracture mechanic approaches. A first modeling procedure is made towards analyzing and investigating the damage mechanisms in TRC specimen under tension loading which are mainly characterized by matrix cracking and yarn pullout. This modeling approach allows for considering the yarn crack bridging which is a main characteristic behavior of TRC. In the same manner, 3D Finite-Element models are conducted for calculating the required reinforcement development lengths and the reinforcement overlapping lengths. The conducted approach takes into account different damage mechanisms observed in the corresponding experimental investigations which are also used for calibrating the modeling procedures. Moreover, the presented approach covers a wide range of required textile reinforcement overlapping lengths and development lengths and provides the corresponding ultimate loads
Lepenies, Ingolf G. "Zur hierarchischen und simultanen Multi-Skalen-Analyse von Textilbeton." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1231842928873-71702.
Full textThe present work deals with the simulation and the prediction of the effective material behavior of the high performance composite textile reinforced concrete (TRC) subjected to tension. Based on a hierarchical material model within a multi scale approach the load bearing mechanisms of TRC are modeled on three structural scales. Therewith, the mechanical parameters characterizing the composite material can be deduced indirectly by experimentally determined force displacement relations obtained from roving pullout tests. These parameters cannot be obtained by contemporary measuring techniques directly. A micro-meso-macro-prediction model (MMM-PM) for TRC is developed, predicting the macroscopic material behavior by means of simulations of the microscopic and the mesoscopic material behavior. The basis is the qualitative and quantitative identification of the bond properties of the roving-matrix system. The partial impregnation of the rovings and the corresponding varying bond qualities are identified to characterize the bond behavior of rovings in a fine-grained concrete matrix. The huge variety of roving cross-sections is approximated by superellipses on the meso scale. The macroscopic behavior of TRC subjected to tension including multiple cracking of the matrix material is correctly predicted on the basis of the micro- and meso-mechanical models. The calibration and verification of the MMM-PM is performed by simulations of roving pullout tests, whereas a first validation is carried out by a comparison of the numerical predictions with the experimental data from tensile tests. The MMM-PM for TRC is applied to tensile tests of structural members made of TRC. Furthermore, a steel-reinforced concrete plate strengthened by a TRC layer is accurately simulated yielding the macroscopic deflection of the plate, the mesoscopic stress state of the roving and the microscopic stresses of the filaments
Lepenies, Ingolf G. "Zur hierarchischen und simultanen Multi-Skalen-Analyse von Textilbeton." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23636.
Full textThe present work deals with the simulation and the prediction of the effective material behavior of the high performance composite textile reinforced concrete (TRC) subjected to tension. Based on a hierarchical material model within a multi scale approach the load bearing mechanisms of TRC are modeled on three structural scales. Therewith, the mechanical parameters characterizing the composite material can be deduced indirectly by experimentally determined force displacement relations obtained from roving pullout tests. These parameters cannot be obtained by contemporary measuring techniques directly. A micro-meso-macro-prediction model (MMM-PM) for TRC is developed, predicting the macroscopic material behavior by means of simulations of the microscopic and the mesoscopic material behavior. The basis is the qualitative and quantitative identification of the bond properties of the roving-matrix system. The partial impregnation of the rovings and the corresponding varying bond qualities are identified to characterize the bond behavior of rovings in a fine-grained concrete matrix. The huge variety of roving cross-sections is approximated by superellipses on the meso scale. The macroscopic behavior of TRC subjected to tension including multiple cracking of the matrix material is correctly predicted on the basis of the micro- and meso-mechanical models. The calibration and verification of the MMM-PM is performed by simulations of roving pullout tests, whereas a first validation is carried out by a comparison of the numerical predictions with the experimental data from tensile tests. The MMM-PM for TRC is applied to tensile tests of structural members made of TRC. Furthermore, a steel-reinforced concrete plate strengthened by a TRC layer is accurately simulated yielding the macroscopic deflection of the plate, the mesoscopic stress state of the roving and the microscopic stresses of the filaments.
Scholl, Simon [Verfasser]. "Zur kontinuierlichen Herstellung prismatischer Leichtbauprofile aus Faser-Kunststoff-Verbunden mit thermoplastischer Matrix / Simon Scholl." Aachen : Shaker, 2010. http://d-nb.info/1098042565/34.
Full textSommer, Guido Sebastian [Verfasser], Gert [Gutachter] Heinrich, and Wolfgang [Gutachter] Grellmann. "Mikromechanische Untersuchungen zur Faser-Matrix-Haftung in Faser-Kunststoff-Verbunden: : Einfluss von Härtungsdauer, Feuchtigkeit und Prüfparametern / Guido Sebastian Sommer ; Gutachter: Gert Heinrich, Wolfgang Grellmann." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://d-nb.info/1226811779/34.
Full textLang, Katrin [Verfasser]. "Zur Erweiterung des Spektrums von Faser-Kunststoff-Verbunden mit thermoplastischer Matrix – Einsatz unidirektional faserverstärkter Halbzeuge in hoch belasteten Strukturbauteilen des Automobil- und Flugzeugbaus / Katrin Lang." Aachen : Shaker, 2012. http://d-nb.info/1052408788/34.
Full textSommer, Guido Sebastian. "Mikromechanische Untersuchungen zur Faser-Matrix-Haftung in Faser-Kunststoff-Verbunden:: Einfluss von Härtungsdauer, Feuchtigkeit und Prüfparametern." Doctoral thesis, 2017. https://tud.qucosa.de/id/qucosa%3A31135.
Full textFor investigating fibre-matrix adhesion in fibre-polymer composites, macromechanical methods such as transverse tensile and three-point bending tests can be applied as well as micromechanical methods for which single-fibre model composites are used. The latter category of methods includes microbond, single-fibre pull-out (SFPO) and single-fibre fragmentation tests (SFFT). When applying these methods, it needs to be considered that their results can be affected by different influencing factors. In the present thesis, an extensive literature survey with a detailed overview of a larger number of influencing factors is conducted. Based on this overview, the factors curing time, moisture, free fibre length and test speed are acquired as objects of investigation of this thesis. Main results and conclusions of this work are summarised below. Curing time: Results from SFFT investigations on ceramic fibre/epoxy-specimens exhibit a degressive increase of fibre-matrix adhesion with curing time. This indicates that curing time affects SFFT and SFPO results differently due to different underlying principles (based on destructive and, respectively, constructive superposition of internal stresses and load-induced stresses). Moisture: SFPO specimens (carbon fibre/epoxy) are conditioned in humid (50 %rH, 23 °C) and dry climate (0 %rH, 23 °C) for one month prior to testing. The results show lower adhesion due to moisture. It is concluded that uncontrolled humidity, even in this limited climatic spectrum, needs to be considered as an important potential factor of influence (e.g. in partially climatised laboratories). Test parameters: Based on Hooke’s law, it is demonstrated for the SFPO that a) the free fibre length affects the maximum force and b) the effects of the free fibre length and the test speed on the maximum force are interrelated. Both is confirmed with results from SFPO investigations on glass fibre/epoxy-specimens. Furthermore, it is deduced from the above investigations that an increase in test speed from 0.01 µm/s to 0.1 µm/s is legitimate for reducing test duration – in the present case from 30 45 min to 6 8 min. In addition, the effect of erroneously determined input data on the calculation of the local interfacial shear strength is studied using conditions numbers (a measure for the propagation of error). With this, differentiated statements are generated.