To see the other types of publications on this topic, follow the link: Fast MAS.

Journal articles on the topic 'Fast MAS'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fast MAS.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Geen, Helen, Robert Graf, Axel S. D. Heindrichs, et al. "Spin Counting with Fast MAS." Journal of Magnetic Resonance 138, no. 1 (1999): 167–72. http://dx.doi.org/10.1006/jmre.1999.1711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chung, Taewook, Chulho Chung, and Jaeseok Kim. "Fast MAS Reallocation Method for Efficient Video Streaming Service of WiMedia MAC DRP." Journal of Korean Institute of Communications and Information Sciences 40, no. 6 (2015): 1048–57. http://dx.doi.org/10.7840/kics.2015.40.6.1048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Amoureux, Jean-Paul, Bingwen Hu, Julien Trébosc, Qiang Wang, Olivier Lafon, and Feng Deng. "Homonuclear dipolar decoupling schemes for fast MAS." Solid State Nuclear Magnetic Resonance 35, no. 1 (2009): 19–24. http://dx.doi.org/10.1016/j.ssnmr.2008.10.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hardy, Edme H., René Verel, and Beat H. Meier. "Fast MAS Total Through-Bond Correlation Spectroscopy." Journal of Magnetic Resonance 148, no. 2 (2001): 459–64. http://dx.doi.org/10.1006/jmre.2000.2258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tan, Kong Ooi, Vipin Agarwal, Nils-Alexander Lakomek, Susanne Penzel, Beat H. Meier, and Matthias Ernst. "Efficient low-power TOBSY sequences for fast MAS." Solid State Nuclear Magnetic Resonance 89 (February 2018): 27–34. http://dx.doi.org/10.1016/j.ssnmr.2017.11.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Murphy, Robert C., and Kathleen A. Harrison. "Fast atom bombardment mass spectrometry of phospholipids." Mass Spectrometry Reviews 13, no. 1 (1994): 57–75. http://dx.doi.org/10.1002/mas.1280130105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

SCHNELL, I. "Dipolar recoupling in fast-MAS solid-state NMR spectroscopy." Progress in Nuclear Magnetic Resonance Spectroscopy 45, no. 1-2 (2004): 145–207. http://dx.doi.org/10.1016/j.pnmrs.2004.06.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Filip, C., and S. Hafner. "Analysis of Multiple-Pulse Techniques under Fast MAS Conditions." Journal of Magnetic Resonance 147, no. 2 (2000): 250–60. http://dx.doi.org/10.1006/jmre.2000.2189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hardy, Edme H., Andreas Detken, and Beat H. Meier. "Fast-MAS total through-bond correlation spectroscopy using adiabatic pulses." Journal of Magnetic Resonance 165, no. 2 (2003): 208–18. http://dx.doi.org/10.1016/j.jmr.2003.08.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mentink-Vigier, Frédéric, Shimon Vega, and Gaël De Paëpe. "Fast and accurate MAS–DNP simulations of large spin ensembles." Physical Chemistry Chemical Physics 19, no. 5 (2017): 3506–22. http://dx.doi.org/10.1039/c6cp07881h.

Full text
Abstract:
A deeper understanding of parameters affecting Magic Angle Spinning Dynamic Nuclear Polarization (MAS–DNP), an emerging nuclear magnetic resonance hyperpolarization method, is crucial for the development of new polarizing agents and the successful implementation of the technique at higher magnetic fields (>10 T).
APA, Harvard, Vancouver, ISO, and other styles
11

Laage, Ségolène, Joseph R. Sachleben, Stefan Steuernagel, Roberta Pierattelli, Guido Pintacuda, and Lyndon Emsley. "Fast acquisition of multi-dimensional spectra in solid-state NMR enabled by ultra-fast MAS." Journal of Magnetic Resonance 196, no. 2 (2009): 133–41. http://dx.doi.org/10.1016/j.jmr.2008.10.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Rossini, Aaron J., Michael P. Hanrahan, and Martin Thuo. "Rapid acquisition of wideline MAS solid-state NMR spectra with fast MAS, proton detection, and dipolar HMQC pulse sequences." Physical Chemistry Chemical Physics 18, no. 36 (2016): 25284–95. http://dx.doi.org/10.1039/c6cp04279a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Egge, Heinz, and Jasna Peter-Katalinić. "Fast atom bombardment mass spectrometry for structural elucidation of glycoconjugates." Mass Spectrometry Reviews 6, no. 3 (1987): 331–93. http://dx.doi.org/10.1002/mas.1280060302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Paruzzo, Federico M., Brennan J. Walder, and Lyndon Emsley. "Line narrowing in 1H NMR of powdered organic solids with TOP-CT-MAS experiments at ultra-fast MAS." Journal of Magnetic Resonance 305 (August 2019): 131–37. http://dx.doi.org/10.1016/j.jmr.2019.06.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Andreas, Loren B., Tanguy Le Marchand, Kristaps Jaudzems, and Guido Pintacuda. "High-resolution proton-detected NMR of proteins at very fast MAS." Journal of Magnetic Resonance 253 (April 2015): 36–49. http://dx.doi.org/10.1016/j.jmr.2015.01.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gil, Ana M., Enrica Alberti, C. Parreira, B. J. Goodfellow, and B. Rakvin. "A fast MAS 1H NMR study of amino acids and proteins." Journal of Molecular Structure 602-603 (January 2002): 357–66. http://dx.doi.org/10.1016/s0022-2860(01)00682-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Pawlak, Tomasz, Piotr Paluch, Agata Jeziorna, Grzegorz D. Bujacz, and Marek J. Potrzebowski. "Slow and Very Fast MAS Solid State NMR Study of Biopolymers." Macromolecular Symposia 339, no. 1 (2014): 60–69. http://dx.doi.org/10.1002/masy.201300139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Shida, Y., L. J. Deterding, K. O'Hara, M. Kono, and K. B. Tamer. "Macrolide antibiotic structure determination by fast atom bombardment/ tandem mas, spectrometry." Tetrahedron 49, no. 41 (1993): 9221–34. http://dx.doi.org/10.1016/0040-4020(93)80009-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

De Vita, Enrico, and Lucio Frydman. "Spectral Editing in 13C MAS NMR under Moderately Fast Spinning Conditions." Journal of Magnetic Resonance 148, no. 2 (2001): 327–37. http://dx.doi.org/10.1006/jmre.2000.2255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zhang, Rongchun, You-lee Hong, Thirupathi Ravula, Yusuke Nishiyama, and Ayyalusamy Ramamoorthy. "High-resolution proton-detected MAS experiments on self-assembled diphenylalanine nanotubes enabled by fast MAS and high magnetic field." Journal of Magnetic Resonance 313 (April 2020): 106717. http://dx.doi.org/10.1016/j.jmr.2020.106717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Komori, Tetsuya, Toshio Kawasaki, and Hans-Rolf Schulten. "Field desorption and fast atom bombardment mass spectrometry of biologically active natural oligoglycosides." Mass Spectrometry Reviews 4, no. 3 (1985): 255–93. http://dx.doi.org/10.1002/mas.1280040302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Miller, Jack Martin. "Fast atom bombardment mass spectrometry (FAB MS) of organometallic, coordination, and related compounds." Mass Spectrometry Reviews 9, no. 3 (1990): 319–47. http://dx.doi.org/10.1002/mas.1280090304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Tecklenburg, Ronald E., and David H. Russell. "An evaluation of the analytical utility of the photodissociation of fast ion beams." Mass Spectrometry Reviews 9, no. 4 (1990): 405–51. http://dx.doi.org/10.1002/mas.1280090403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

De Pauw, E., A. Agnello, and F. Derwa. "Liquid matrices for liquid secondary ion mass spectrometry-fast atom bombardment: An update." Mass Spectrometry Reviews 10, no. 4 (1991): 283–301. http://dx.doi.org/10.1002/mas.1280100402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Peter-Katalinic, Jasna. "Analysis of glycoconjugates by fast atom bombardment mass spectrometry and related ms techniques." Mass Spectrometry Reviews 13, no. 1 (1994): 77–98. http://dx.doi.org/10.1002/mas.1280130106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Liu, Qing-Hua, Chao Ma, Bing-Wen Hu, et al. "Rotor-synchronized dipolar-filter sequence at fast MAS in solid-state NMR." Journal of Magnetic Resonance 212, no. 2 (2011): 455–59. http://dx.doi.org/10.1016/j.jmr.2011.07.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Amoureux, Jean-Paul, Bingwen Hu, and Julien Trébosc. "Enhanced resolution in proton solid-state NMR with very-fast MAS experiments." Journal of Magnetic Resonance 193, no. 2 (2008): 305–7. http://dx.doi.org/10.1016/j.jmr.2008.05.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Mao, Kanmi, and Marek Pruski. "Homonuclear dipolar decoupling under fast MAS: Resolution patterns and simple optimization strategy." Journal of Magnetic Resonance 203, no. 1 (2010): 144–49. http://dx.doi.org/10.1016/j.jmr.2009.12.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Shen, Ming, Qinghua Liu, Julien Trébosc, et al. "Exploring various modulation-sideband recoupling conditions of SHA+ sequence at fast MAS." Solid State Nuclear Magnetic Resonance 55-56 (October 2013): 42–47. http://dx.doi.org/10.1016/j.ssnmr.2013.07.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Abdulghafor, Rawad, and Sultan Almotairi. "A Fast Non-Linear Symmetry Approach for Guaranteed Consensus in Network of Multi-Agent Systems." Symmetry 12, no. 10 (2020): 1692. http://dx.doi.org/10.3390/sym12101692.

Full text
Abstract:
There has been tremendous work on multi-agent systems (MAS) in recent years. MAS consist of multiple autonomous agents that interact with each order to solve a complex problem. Several applications of MAS can be found in computer networks, smart grids, and the modeling of complex systems. Despite numerous benefits, a significant challenge for MAS is achieving a consensus among agents in a shared target task, which is difficult without applying certain mathematical equations. Non-linear models offer better possibility of resolving consensus for MAS; however, existing non-linear models are consi
APA, Harvard, Vancouver, ISO, and other styles
31

Shepilov, Yaroslav, Daria Pavlova, and Daria Kazanskaia. "Multithreading MAS Platform for Real-Time Scheduling." International Journal of Software Innovation 4, no. 1 (2016): 48–60. http://dx.doi.org/10.4018/ijsi.2016010104.

Full text
Abstract:
The scheduling is the process of the optimal resource allocation that is widely used both in everyday life and specific domains. In the paper the description of scheduling problem is given. The authors consider traditional methods and tools for solving this problem, then describe the proposed approach based on multi-agent technologies and multithreading application. Nowadays there exist numerous approaches to solving of the scheduling problem. In the most of cases this process has to be supported and managed by the complex tools, sometimes based on mathematical principles. The suggested method
APA, Harvard, Vancouver, ISO, and other styles
32

Tomer, Kenneth B. "The development of fast atom bombardment combined with tandem mass spectrometry for the determination of biomolecules." Mass Spectrometry Reviews 8, no. 6 (1989): 445–82. http://dx.doi.org/10.1002/mas.1280080602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Duong, Nghia Tuan, Federica Rossi, Maria Makrinich, et al. "Accurate 1H-14N distance measurements by phase-modulated RESPDOR at ultra-fast MAS." Journal of Magnetic Resonance 308 (November 2019): 106559. http://dx.doi.org/10.1016/j.jmr.2019.07.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sajith, Sadasivan V., Sundaresan Jayanthi, and Adonis Lupulescu. "Effective Hamiltonian and 1H-14N cross polarization/double cross polarization at fast MAS." Journal of Magnetic Resonance 320 (November 2020): 106832. http://dx.doi.org/10.1016/j.jmr.2020.106832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Filip, Xenia, Carmen Tripon, and Claudiu Filip. "Heteronuclear decoupling under fast MAS by a rotor-synchronized Hahn-echo pulse train." Journal of Magnetic Resonance 176, no. 2 (2005): 239–43. http://dx.doi.org/10.1016/j.jmr.2005.06.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Paluch, Piotr, Tomasz Pawlak, Jean-Paul Amoureux, and Marek J. Potrzebowski. "Simple and accurate determination of X–H distances under ultra-fast MAS NMR." Journal of Magnetic Resonance 233 (August 2013): 56–63. http://dx.doi.org/10.1016/j.jmr.2013.05.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hirsh, David A., Anuradha V. Wijesekara, Scott L. Carnahan, et al. "Rapid Characterization of Formulated Pharmaceuticals Using Fast MAS 1H Solid-State NMR Spectroscopy." Molecular Pharmaceutics 16, no. 7 (2019): 3121–32. http://dx.doi.org/10.1021/acs.molpharmaceut.9b00343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Pawsey, Shane, Mark McCormick, Susan De Paul, et al. "1H Fast MAS NMR Studies of Hydrogen-Bonding Interactions in Self-Assembled Monolayers." Journal of the American Chemical Society 125, no. 14 (2003): 4174–84. http://dx.doi.org/10.1021/ja029008u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Geen, H., J. J. Titman, J. Gottwald, and H. W. Spiess. "Spinning Sidebands in the Fast-MAS Multiple-Quantum Spectra of Protons in Solids." Journal of Magnetic Resonance, Series A 114, no. 2 (1995): 264–67. http://dx.doi.org/10.1006/jmra.1995.1137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Phyo, Pyae, and Mei Hong. "Fast MAS 1H–13C correlation NMR for structural investigations of plant cell walls." Journal of Biomolecular NMR 73, no. 12 (2019): 661–74. http://dx.doi.org/10.1007/s10858-019-00277-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kolodziejski, Waclaw, and Jacek Klinowski. "Assignment of 13C NMR spectra of solids using fast MAS with cross-polarization." Journal of Magnetic Resonance (1969) 99, no. 3 (1992): 611–14. http://dx.doi.org/10.1016/0022-2364(92)90217-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Equbal, Asif, Morten Bjerring, Kshama Sharma, P. K. Madhu, and Niels Chr Nielsen. "Heteronuclear decoupling in MAS NMR in the intermediate to fast sample spinning regime." Chemical Physics Letters 644 (January 2016): 243–49. http://dx.doi.org/10.1016/j.cplett.2015.12.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Czernek, Jiří, and Jiří Brus. "Exploring Accuracy Limits of Predictions of the 1H NMR Chemical Shielding Anisotropy in the Solid State." Molecules 24, no. 9 (2019): 1731. http://dx.doi.org/10.3390/molecules24091731.

Full text
Abstract:
The 1H chemical shielding anisotropy (CSA) is an NMR parameter that is exquisitely sensitive to the local environment of protons in crystalline systems, but it is difficult to obtain it experimentally due to the need to concomitantly suppress other anisotropic interactions in the solid-state NMR (SSNMR) pulse sequences. The SSNMR measurements of the 1H CSA are particularly challenging if the fast magic-angle-spinning (MAS) is applied. It is thus important to confront the results of both the single-crystal (SC) and fast-MAS experiments with their theoretical counterparts. Here the plane-waves (
APA, Harvard, Vancouver, ISO, and other styles
44

Ye, Yue Qi, Michal Malon, Charlotte Martineau, Francis Taulelle, and Yusuke Nishiyama. "Rapid measurement of multidimensional 1H solid-state NMR spectra at ultra-fast MAS frequencies." Journal of Magnetic Resonance 239 (February 2014): 75–80. http://dx.doi.org/10.1016/j.jmr.2013.12.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

McGregor, Alan C., Peter J. Lukes, Julian R. Osman, and Joe A. Crayston. "13C CP/MAS NMR studies of tetraazaannulenes: fast proton transfer in the solid state." Journal of the Chemical Society, Perkin Transactions 2, no. 4 (1995): 809. http://dx.doi.org/10.1039/p29950000809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ji, Yi, Lixin Liang, Xinhe Bao, and Guangjin Hou. "Recent progress in dipolar recoupling techniques under fast MAS in solid-state NMR spectroscopy." Solid State Nuclear Magnetic Resonance 112 (April 2021): 101711. http://dx.doi.org/10.1016/j.ssnmr.2020.101711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Malär, Alexander A., Susanne Smith-Penzel, Gian-Marco Camenisch, et al. "Quantifying proton NMR coherent linewidth in proteins under fast MAS conditions: a second moment approach." Physical Chemistry Chemical Physics 21, no. 35 (2019): 18850–65. http://dx.doi.org/10.1039/c9cp03414e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Pizzagalli, Diego A., Moria Smoski, Yuen-Siang Ang, et al. "Selective kappa-opioid antagonism ameliorates anhedonic behavior: evidence from the Fast-fail Trial in Mood and Anxiety Spectrum Disorders (FAST-MAS)." Neuropsychopharmacology 45, no. 10 (2020): 1656–63. http://dx.doi.org/10.1038/s41386-020-0738-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Penzel, Susanne, Andres Oss, Mai-Liis Org, et al. "Spinning faster: protein NMR at MAS frequencies up to 126 kHz." Journal of Biomolecular NMR 73, no. 1-2 (2019): 19–29. http://dx.doi.org/10.1007/s10858-018-0219-9.

Full text
Abstract:
Abstract We report linewidth and proton T1, T1ρ and T2′ relaxation data of the model protein ubiquitin acquired at MAS frequencies up to 126 kHz. We find a predominantly linear improvement in linewidths and coherence decay times of protons with increasing spinning frequency in the range from 93 to 126 kHz. We further attempt to gain insight into the different contributions to the linewidth at fast MAS using site-specific analysis of proton relaxation parameters and present bulk relaxation times as a function of the MAS frequency. For microcrystalline fully-protonated ubiquitin, inhomogeneous c
APA, Harvard, Vancouver, ISO, and other styles
50

Mao, Kanmi, and Marek Pruski. "Directly and indirectly detected through-bond heteronuclear correlation solid-state NMR spectroscopy under fast MAS." Journal of Magnetic Resonance 201, no. 2 (2009): 165–74. http://dx.doi.org/10.1016/j.jmr.2009.09.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!