Academic literature on the topic 'Fatigue en fretting'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fatigue en fretting.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fatigue en fretting"

1

Waterhouse, R. B. "Fretting fatigue." International Materials Reviews 37, no. 1 (January 1992): 77–98. http://dx.doi.org/10.1179/imr.1992.37.1.77.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stack, M. M. "Fretting Fatigue." Tribology International 29, no. 1 (February 1996): 88–89. http://dx.doi.org/10.1016/0301-679x(96)90011-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Waterhouse, R. B. "Environmental Effects in Fretting, Fatigue and Fretting-Fatigue." Key Engineering Materials 35-36 (January 1991): 63–79. http://dx.doi.org/10.4028/www.scientific.net/kem.35-36.63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Berthier, Y., L. Vincent, and M. Godet. "Fretting fatigue and fretting wear." Tribology International 22, no. 4 (August 1989): 235–42. http://dx.doi.org/10.1016/0301-679x(89)90081-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dubourg, M.-C., Y. Berthier, and L. Vincent. "Cracking under fretting fatigue: Damage prediction under multiaxial fatigue." Journal of Strain Analysis for Engineering Design 37, no. 6 (August 1, 2002): 519–33. http://dx.doi.org/10.1243/030932402320950134.

Full text
Abstract:
Fretting is one of the plagues of modern industry. It occurs whenever a junction between components is subjected to cyclic sliding, with small relative displacements at the interface of the contacting surfaces. Further cyclic bulk stresses may be superimposed on to one or both components. The investigation of fretting wear and fretting fatigue started in the early 1970s. It is responsible for premature fatigue failures and often limits the life of a component. Crack initiation and growth under fretting contact conditions have been investigated. The fretting map concepts allow the first degradation responses of the material—no degradation, cracking and wear—to be related to a fretting regime with its corresponding local contact conditions during fretting tests. The fretting fatigue prediction models have been developed and compared to experiments conducted either on metallic or photoelastic materials. A special emphasis has been directed towards crack nucleation and early growth during stage I, the stage I-stage II transition and stage II crack growth (crack initiation sites, orientation, growth path, formation of a branch, growth mechanism). The analysis of the different stages that comprise the crack lifetime has been carried out in order to understand the effects of diverse parameters that are thought to influence the fretting damage.
APA, Harvard, Vancouver, ISO, and other styles
6

KITAHARA, Hiroki, Masanobu KUBOTA, Chu SAKAE, and Yoshiyuki KONDO. "Fretting Fatigue under Variable Loading below Fretting Fatigue Limit." Proceedings of the Materials and processing conference 2003.11 (2003): 115–16. http://dx.doi.org/10.1299/jsmemp.2003.11.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

KONDO, Y., C. SAKAE, M. KUBOTA, H. KITAHARA, and K. YANAGIHARA. "Fretting fatigue under variable loading below fretting fatigue limit." Fatigue Fracture of Engineering Materials and Structures 29, no. 3 (March 2006): 191–99. http://dx.doi.org/10.1111/j.1460-2695.2006.00980.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shimamura, Yoshinobu, Reo Kasahara, Hitoshi Ishii, Keiichiro Tohgo, Tomoyuki Fujii, Toru Yagasaki, and Soichiro Sumida. "Fretting Fatigue Behaviour of Alloy Steel in the Very High Cycle Region." MATEC Web of Conferences 300 (2019): 18002. http://dx.doi.org/10.1051/matecconf/201930018002.

Full text
Abstract:
It is well known that fretting fatigue strength is much lower than the fatigue strength of smooth specimens and the fatigue limit disappears. Many studies on fretting fatigue have been reported but most of the studies have not cover fatigue properties in the very high cycle regime more than 107 cycles. In this study, an accelerated fretting fatigue testing method was developed by using an ultrasonic torsional fatigue testing machine with a clamping fretting pad. Fretting fatigue tests of CrMo steel were conducted by using the developed method. Test results showed that fretting fatigue failure occurs in the very high cycle region.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhou, Z. R., and L. Vincent. "Cracking Induced by Fretting of Aluminium Alloys." Journal of Tribology 119, no. 1 (January 1, 1997): 36–42. http://dx.doi.org/10.1115/1.2832477.

Full text
Abstract:
Fretting-wear and fretting-fatigue loadings can both result in wear (material loss) and in crack nucleation and propagation (fatigue process). This paper deals with cracking induced by small amplitude displacements in the case of aeronautic aluminium alloys. The two sets of fretting maps are introduced: running condition fretting map is composed of partial slip (sticking), mixed fretting and gross sliding regime; material response fretting map is associated with two macro-degradation modes. Crack nucleation and propagation are analysed for every fretting regime. The mixed fretting regime appeared most detrimental with regards to fatigue cracking. Slip amplitude and normal load main effects discussed for fretting wear can be used to justify the fatigue limit decrease often obtained for fretting fatigue experiments.
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Dan, Xiao Song Jiang, Pei Qiu Sun, and Yue Shen. "Influence of Frequency on Fretting Fatigue Damage Behavior of Al-Zn-Mg Alloy." Advanced Materials Research 813 (September 2013): 407–12. http://dx.doi.org/10.4028/www.scientific.net/amr.813.407.

Full text
Abstract:
nfluence of frequency on fretting fatigue damage behavior of Al-Zn-Mg alloy was studied in this paper. Fretting fatigue lives and damage characteristics of Al-Zn-Mg alloy were researched under different frequencies. Macroscopic tests and microscopic analysis were used to study on influence of frequency on fretting fatigue damage behavior of Al-Zn-Mg alloy. Fatigue lives would be greatly reduced by fretting under the experimental conditions in this paper. With frequency increasing, fretting fatigue lives were firstly decreased and then increased (f=9Hz). Fretting scar, which was the important reason for fretting fatigue crack initiation, was caused by embedding debris; eventually, crack initiated at the edge of the fretting scar. Fretting fatigue fracture is a whole process of crack initiation, propagation and final fracture. And final fracture increased with frequency reducing, which was generally occurred near the center of the fracture.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Fatigue en fretting"

1

Kirkpatrick, Gary W. "Fretting fatigue analysis and palliatives." Thesis, Springfield, Va. : Available from National Technical Information Service, 1999. http://handle.dtic.mil/100.2/ADA372220.

Full text
Abstract:
Thesis (Degree of Naval Engineer and M.S. in Materials Science and Engineering) Massaschusetts Institute of Technology, June 1999.
"June 1999". Includes bibliographical references (leaves 96-100). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
2

Nowell, D. "An analysis of fretting fatigue." Thesis, University of Oxford, 1988. http://ora.ox.ac.uk/objects/uuid:61c9f75d-7c81-4280-9997-91f6e79543fb.

Full text
Abstract:
This thesis describes a series of fretting fatigue experiments carried out under closely controlled conditions of partial slip. These experiments confirm the existence of a size effect whereby the fretting fatigue life of an aluminium alloy is shown to vary with contact size. The configuration chosen, of cylindrical fretting pads contacting a plane specimen is amenable to classical stress analysis and the surface tractions between the contacting bodies are derived. The effects of tension in the specimen, finite specimen thickness, differing elastic constants, and surface roughness are all investigated and incorporated into the analysis where appropriate. A technique is then developed to calculate stress intensity factors for plane cracks growing under the contact load at an arbitrary angle to the free surface. The analysis is then applied to the experimental results and three possible explanations for the size effect are proposed, based on statistical effects, crack arrest, and crack initiation. These are examined in the light of the experimental evidence and it is proposed that the variation of fatigue life with contact size is due to an increase in the amount of fretting damage above a threshold level for crack initiation. A composite parameter is chosen to characterise the severity of fretting conditions and this is shown to describe the experimental results accurately. Finally, the use of this parameter in design calculations is discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Xu, Yangjian. "Computational analysis of fretting fatigue." Düsseldorf VDI-Verl, 2009. http://d-nb.info/996624554/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kirkpatrick, Gary W. (Gary Wayne) 1966. "Fretting fatigue analysis and palliatives." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/85327.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering; and, (Nav.E.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1999.
Includes bibliographical references (leaves 96-100).
by Gary W. Kirkpatrick.
S.M.
Nav.E.
APA, Harvard, Vancouver, ISO, and other styles
5

Bellecave, Johan. "Stress Gradients In Fretting Fatigue." Thesis, Cachan, Ecole normale supérieure, 2015. http://www.theses.fr/2015DENS0036/document.

Full text
Abstract:
Cette thèse fait partie d’un programme de recherche international (IRG Cognac). Lancé par le motoriste SNECMA (groupe SAFRAN), ce projet regroupe l’ENS Cachan, UnB, ENSMA, CNRS, Snecma, Turbomeca et Messier Bugatti Dowti, et se concentre sur l’effet du gradient des contraintes sur endommagement par fretting fatigue. Le fretting-fatigue se réfère au processus d’endommagement localisés en bord de fuite entre deux corps en contact soumis à un chargement de fatigue. La maitrise de ce phénomène est d’une importance cruciale dans la détermination des durées de vie des disques de turbine. En bord de contact, le champ de contrainte hérité des forces de contact est maximal à la surface mais présente un fort gradient en s’éloignant du contact.Il a été montré dans cette thèse que pour l’alliage Ti-6AL-4V, les approches locales, basés sur le niveau de contrainte au points critiques ne sont pas applicable dans ces conditions. Une approche non locale, s’appuyant sur la théorie de la distance critique a donc été utilisée. En effet, des fissures courtes initiées au point critique peuvent propager jusqu’à rupture ou peuvent s’arrêter si la diminution des contraintes est suffisamment sévère. Une seconde difficulté réside dans la nature multiaxial et localement non proportionnel du chargement. Le fretting fatigue est généralement créé par la superposition d’un chargement de fatigue cyclique, d’une force normale à la surface souvent considérée constante, et d’une force cyclique tangentiel à la surface mais dont la fréquence peut être différente de celle de la fatigue.Les résultats des essais réalisés ont mis en évidence l’effet du gradient des contraintes sur la fissuration et ont étaient utilisés pour évaluer le potentiel de diffèrent critères pour le dimensionnement en fatigue des structures. La simulation du phénomène a en effet été réalisé en utilisant différente approches. La première s’appuie sur la Théorie de la distance critique et utilise un critère multiaxial. La seconde utilise l’amplitude du facteur d’intensité des contraintes, ΔK, pour prédire l’arrêt des fissures courtes. Finalement un récent modèle construit comme un critère de plasticité en pointe de fissure a été appliqué au problème de fretting fatigue. Ce critère a pour particularité de prendre en compte la contrainte T dans le développement asymptotique en pointe de fissure
This thesis is part of an international research program (IRG Cognac) initiated by the engine manufacturer SNECMA (SAFRAN group) involving ENS Cachan, UnB, ENSMA, CNRS, Snecma, Turbomeca et Messier Bugatti Dowty. The thesis focuses on the effect of a stress gradient in fretting fatigue. Fretting-fatigue refers to the damage process localized at the frontier of the contact between two contacting bodies subjected to fatigue loadings. The prediction of this phenomenon is of major importance in determining, for instance, the lifetime of fan's disc. In the vicinity of the contact front, the stress field inherited from the contact loads is maximal at the surface and displays a strong gradient from the surface. It was shown in this thesis, for a Ti-6AL-4V alloy, that local approaches, based on local stresses at the most critical point, are not appropriate to predict fretting fatigue lives. As a matter of fact, short cracks initiated at the most critical point may stop if the stress decay from the surface is strong enough or may continue their growth, up to the failure of the component, if the stress gradient from the surface is not string enough. A second difficulty is the multiaxial and non-proportional nature of the loading conditions. Fatigue-fretting stems from the combination of loads that have neither the same spatial distribution nor the same time-dependency. In fretting-fatigue tests, three loading components are considered, the fatigue loading of the component (cyclic), the normal part (assumed to be constant) and the in-plane part (cyclic) of the loads between the two contacting components. To quantify the effect of the stress gradient, tests were carried out on a fatigue testing contact bench developed at the University of Brasilia, with experimental conditions ensuring different stress gradient while keeping the maximal stress the same. Damage mechanisms were studied using post-mortem analysis and optical microscopy on the contact elements tested. The prediction of the fretting fatigue life was done using different approaches. The first one is based on the Critical Distance Method and a fatigue criterion. The second is based on a K-based short crack arrest method. Finally, a new criterion was proposed. This method considers a generalized von Mises yield criterion for the crack tip region and accounts for the T-stresses in the asymptotic LEFM development
APA, Harvard, Vancouver, ISO, and other styles
6

Swalla, Dana Ray. "Fretting fatigue damage prediction using multiaxial fatigue criteria." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/17033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Kyungmok. "The investigation of fretting wear and fretting fatigue of coated systems." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Madge, Jason John. "Numerical modelling of the effect of fretting wear on fretting fatigue." Thesis, University of Nottingham, 2009. http://eprints.nottingham.ac.uk/10681/.

Full text
Abstract:
This thesis reports the development of a method for predicting the fretting fatigue life of a system which takes into consideration the material removed as a result of fretting wear. The first implementation is based on a critical plane, multiaxial fatigue model and a damage accumulation framework. The model is applied to both ‘cylinder on flat’ and ‘rounded edge punch on flat’ geometries, for which experimental data from the literature is used for comparison. The method is able to predict a number of key experimentally observed phenomena, which existing approaches are unable to do. The dependence of fretting fatigue life on slip amplitude is captured demonstrating a critical range of slip amplitudes, relating to the partial slip regime, for which a minimum in life is predicted. The method is also shown to predict the occurrence of cracking at specific locations in the slip region. The method indicates that these phenomena are dependent on the relative rates of wear and fatigue damage occurring across the contact. The second implementation treats the nucleation and propagation fatigue phases separately. The fatigue model adopted above is reformulated to serve as a nucleation model, whilst the crack propagation phase is based on a fracture mechanics perspective. The method is used to study the effect of wear on both the propagation and nucleation aspects of fatigue. The method is also employed to investigate the role of fretting wear in fretting fatigue crack arrest.
APA, Harvard, Vancouver, ISO, and other styles
9

Van, Peteghem Benjamin. "Fretting et fretting-fatigue à haute température d'alliages de titane revêtus." Phd thesis, Ecole Centrale de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00961238.

Full text
Abstract:
Les endommagements provoqués par le fretting sont multiples et peuvent causer de sévères disfonctionnements. Il est donc nécessaire d'étudier le fretting, en particulier dans le cas des alliages de titanes fréquemment employés dans l'aéronautique. Les endommagements générés par fretting peuvent être de l'usure, de la fissuration ou bien une combinaison des deux. La distinction entre ces deux comportements entraine régulièrement une dichotomie dans le choix des sujets traités. L'étude présentée ici fait le choix de rassembler en une seule démarche les études d'usure et de fissuration. Cette approche permet d'avoir une vision d'ensemble du comportement en fretting et fretting-fatigue d'un contact aube-disque dans un compresseur haute pression. Afin de respecter les contraintes industrielles, l'étude est réalisée à haute température (450°C) avec un contact plan sur plan revêtu. Pour réaliser cette étude, un dispositif expérimental original a été mis en place et validé. Les premiers résultats tribologiques montrent un effet majeur de la pression de contact sur le comportement tribologique de l'interface. Le coefficient de frottement du traitement de surface étudié diminue quand la pression de contact augmente. Une hypothèse d'expulsion du lubrifiant solide inclus dans le dépôt est proposée pour expliquer ce phénomène. Les résultats d'usure et notamment les analyses physicochimiques montrent un comportement sacrificiel du dépôt qui est usé préférentiellement au contre-corps. Cette caractéristique est bénéfique car dans l'application industrielle le contre-corps (le disque) doit être protégé en priorité par rapport à la pièce revêtue (l'aube). Les résultats d'usure dans la configuration industrielle sont complétés par une étude plus fondamentale mettant en évidence l'influence de la fréquence et du cycle de chargement du contact. La morphologie des traces d'usure est modifiée par ces deux facteurs, et le taux d'usure énergétique est également modifié. L'étude de la fissuration est menée en fretting simple et en fretting-fatigue. La fissuration du contre-corps non revêtu est modifiée par l'application d'un dépôt sur le poinçon revêtu. L'effet est principalement observable sur la longueur maximale de fissure, qui est divisée par deux dans le cas revêtu. Les résultats en fretting-fatigue sont également modifiés par la présence du revêtement, dont l'effet est plus présent pour les grands nombre de cycles. Enfin, une représentation des résultats sous forme de diagramme polaire normalisé est proposée afin de donner une image claire de l'ensemble des performances du dépôt.
APA, Harvard, Vancouver, ISO, and other styles
10

Rajasekaran, Ramesh. "Analysis of dovetails for fretting fatigue." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.410672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Fatigue en fretting"

1

Hills, David A., and Hendrik N. Andresen. Mechanics of Fretting and Fretting Fatigue. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70746-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

A, Hills D. Mechanics of fretting fatigue. Dordrecht: Kluwer Academic Publishers, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kirkpatrick, Gary W. Fretting fatigue analysis and palliatives. Springfield, Va: Available from National Technical Information Service, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hoeppner, DW, V. Chandrasekaran, and C. Elliott, eds. Fretting Fatigue: Current Technology and Practices. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2000. http://dx.doi.org/10.1520/stp1367-eb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

A, Hills D. Mechanics of Fretting Fatique. Dordrecht: Springer Netherlands, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

International Symposium on Fretting Fatigue (1993 University of Sheffield). Fretting fatigue: Papers presented at the International Symposium on Fretting Fatigue, held at the University of Sheffield. London: Mechanical Engineering Publications, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Attia, MH, and RB Waterhouse, eds. Standardization of Fretting Fatigue Test Methods and Equipment. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1992. http://dx.doi.org/10.1520/stp1159-eb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mutoh, Y., DW Hoeppner, and SE Kinyon, eds. Fretting Fatigue: Advances in Basic Understanding and Applications. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2003. http://dx.doi.org/10.1520/stp1425-eb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Chen Xi. Fretting fatigue behaviour of surface engineered low alloy steel. Birmingham: University of Birmingham, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Miyoshi, Kazuhisa. Preliminary study on fatigue strengths of fretted Ti-48Al-2Cr-2Nb. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Fatigue en fretting"

1

Hills, D. A., and D. Nowell. "Fretting Fatigue Tests." In Solid Mechanics and Its Applications, 153–67. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8281-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Datsyshyn, Oleksandra, and Volodymyr Panasyuk. "Fretting Fatigue Fracture." In Structural Integrity, 255–313. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23069-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baietto-Duborg, Marie-Christine, and Trevor Lindley. "Fretting Fatigue: Modeling and Applications." In Fatigue of Materials and Structures, 195–230. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118616994.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schalk, Thomas, Karl-Heinz Lang, and Detlef Löhe. "Fretting Fatigue of Engineering Ceramics." In Corrosion, Wear, Fatigue, and Reliability of Ceramics, 101–10. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470456347.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wörner, C., and K. H. Lang. "Fretting Fatigue Failure of Engineering Ceramics." In Mechanical Properties and Performance of Engineering Ceramics and Composites VII, 125–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118217467.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jayaprakash, M., Kulkarni Achyuth, Mahesh Patel, and Sangam Sangral. "Fretting Fatigue Behavior of Aluminum Alloy." In Lecture Notes in Mechanical Engineering, 683–90. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8767-8_58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hills, David A., and Hendrik N. Andresen. "Experiments to Measure Fretting Fatigue Strength." In Solid Mechanics and Its Applications, 151–60. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70746-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hattori, Toshio, Naoya Nishimura, and Minoru Yamashita. "Fretting Fatigue Strength and Life Estimation Considering the Fretting Wear Process." In Key Engineering Materials, 882–85. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-456-1.882.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Benhamena, Ali, Laïd Aminallah, Abdelghani Baltach, Abdelkrim Aid, Mohamed Benguediab, Abdelwaheb Amrouche, and Noureddine Benseddiq. "The Fretting Fatigue Behavior of Bolted Assemblies." In Advanced Structured Materials, 187–204. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07383-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jacobs, O., K. Friedrich, and K. Schulte. "Systematic Fretting Wear and Fretting Fatigue Studies on Carbon Fibre/Epoxy Laminates." In Developments in the Science and Technology of Composite Materials, 615–20. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1123-9_83.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Fatigue en fretting"

1

Stone, Daniel H. "Fretting Fatigue of Axles." In ASME 2011 Rail Transportation Division Fall Technical Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/rtdf2011-67007.

Full text
Abstract:
The effect of surface damage by fretting corrosion pits under the backing ring or wheel seat will provide stress risers that will serve as crack initiation sites for fatigue crack initiation. Approximately one-half of North American axle failures are initiated by fretting. Both fretting under the backing ring and fretting in the wheel seat are reviewed.
APA, Harvard, Vancouver, ISO, and other styles
2

Golden, Patrick, Harry Millwater, and Xiaobin Yang. "Probabilistic Sensitivity Analysis of Fretting Fatigue." In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-2304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Trobec, Roman, and Matjaž Depolli. "Calculation complexity of fretting fatigue simulations." In CENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2019 (CEST). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5114237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Merritt, David, and Guangrui Zhu. "The Prediction of Connecting Rod Fretting and Fretting Initiated Fatigue Fracture." In 2004 Powertrain & Fluid Systems Conference & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2004. http://dx.doi.org/10.4271/2004-01-3015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Giummarra, Cindie, Harry Zonker, Liang Zeng, and Luke Haylock. "Influence of Fastener Coatings on Fretting Fatigue." In Aerospace Technology Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2007. http://dx.doi.org/10.4271/2007-01-3890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Szolwinski, M., and T. Farris. "Fretting fatigue crack initiation - Aging aircraft concerns." In 35th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-1591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Matlik, John, and Thomas Farris. "High Frequency, High Temperature Fretting Fatigue Investigations." In 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-1681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hayashi, Makoto, and Takashi Ito. "Fretting Fatigue Strength of Nozzle Shaped Structure." In ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-2989.

Full text
Abstract:
In-Core Monitor (ICM) housing of BWR reactor pressure vessel is subjected to the flow induced vibration (FIV). The flow fluctuation takes places in the lower plenum of reactor pressure vessel. It is very much important to evaluate the structural integrity of ICM housing in order to maintain high operating rate. Thus we performed the FIV simulated fatigue test of ICM housing. However, the stress at the weld toe induced by FIV is sufficiently low not to fail. The fatigue endurance limit for the weld root fatigue test specimen with dull taper is 196 MPa. On the while, the fatigue endurance limit for the weld root fatigue test specimen with steep taper is not obtained. When the fatigue test results are approximated by the Stromeyer equation, the fatigue strength for the fatigue life of 109 cycles is estimated as 27 MPa. Finally we performed the fracture mechanics analysis, which indicates that the stress intensity factors for Mode I and II range from 0.1 to 0.2 MPam so that the fatigue crack is not initiated at the weld root by FIV.
APA, Harvard, Vancouver, ISO, and other styles
9

Kowser, Md Arefin, Mohammad Asaduzzaman Chowdhury, and Quazi Md Zobaer Shah. "Effect of loading parameter on fretting fatigue." In 7TH BSME INTERNATIONAL CONFERENCE ON THERMAL ENGINEERING. Author(s), 2017. http://dx.doi.org/10.1063/1.4984724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moustafa, A.-R., B. Berthel, E. Charkaluk, and S. Fouvry. "Experimental study by full field measurement techniques of the stress gradients effect under fretting, fretting-fatigue and notch fatigue." In 2014 Quantitative InfraRed Thermography. QIRT Council, 2014. http://dx.doi.org/10.21611/qirt.2014.203.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Fatigue en fretting"

1

Brooks, C. L., S. A. Prost-Domasky, K. T. Honeycutt, T. B. Mills, and N. Young. Fretting Fatigue Model. Fort Belvoir, VA: Defense Technical Information Center, February 2003. http://dx.doi.org/10.21236/ada412736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shepard, M. J., P. S. Prevey, and N. Jayaraman. Effects of Surface Treatment on Fretting Fatigue Performance of Ti-6Al-4V. Fort Belvoir, VA: Defense Technical Information Center, November 2004. http://dx.doi.org/10.21236/ada430663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

McDowell, D. L., R. W. Neu, M. Zhang, X. Huang, and J. R. Mayeur. Microstructure and 3-D Effects in Fretting Fatigue of Ti Alloys and Ni-Base Superalloys. Fort Belvoir, VA: Defense Technical Information Center, December 2006. http://dx.doi.org/10.21236/ada589151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Prevey, Paul S., and John T. Cammett. Restoring Fatigue Performance of Corrosion Damaged Aa7075-T6 and Fretting in 4340 Steel with Low Plasticity Burnishing. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada444606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography