Academic literature on the topic 'Fatty Acid Methyl Ester (FAME)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fatty Acid Methyl Ester (FAME).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fatty Acid Methyl Ester (FAME)"
Anuar, S. T., S. M. Mugo, and J. M. Curtis. "A flow-through enzymatic microreactor for the rapid conversion of triacylglycerols into fatty acid ethyl ester and fatty acid methyl ester derivatives for GC analysis." Analytical Methods 7, no. 14 (2015): 5898–906. http://dx.doi.org/10.1039/c5ay00800j.
Full textChen, Xiu, Lei Chen, Yin Nan Yuan, Yong Bin Lai, Xing Qiao, and Ling Ling Cai. "Combustion Characteristics of Biodiesel Derived from Palm and Rapeseed Oil." Applied Mechanics and Materials 448-453 (October 2013): 1633–36. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.1633.
Full textCheng, Zheng Zai, Su Su Lin, Rui Lei, Xiao Chao Yan, and Yu Jing Nie. "Synthesis of Biodisiel from Used Cooking Oils Catalyzed by Solid Acid." Advanced Materials Research 236-238 (May 2011): 496–500. http://dx.doi.org/10.4028/www.scientific.net/amr.236-238.496.
Full textSuaniti, Ni Made, I. Wayan Bandem Adnyana, and Tjokorda Gde Tirta Nindhia. "Ester Group Detection of Biodiesel from Used Cooking Oil with Sulphuric and Toluene Sulphuric Acid Catalysts." Key Engineering Materials 877 (February 2021): 153–59. http://dx.doi.org/10.4028/www.scientific.net/kem.877.153.
Full textJamshaid, M., H. H. Masjuki, M. A. Kalam, N. W. M. Zulkifli, A. Arslan, and Z. M. Zulfattah. "Effect of Fatty Acid Methyl Ester on Fuel-Injector Wear Characteristics." Journal of Biobased Materials and Bioenergy 14, no. 3 (June 1, 2020): 327–39. http://dx.doi.org/10.1166/jbmb.2020.1974.
Full textUcciani, Eugène, Alain Debal, Michel Gruber, and Robert L. Wolff. "Fatty Acid Composition of Some Ranunculaceae Seed Oils." Zeitschrift für Naturforschung C 51, no. 3-4 (April 1, 1996): 151–54. http://dx.doi.org/10.1515/znc-1996-3-403.
Full textChandrasekaran, Manivachagam, Krishnan Kannathasan, and Venugopalan Venkatesalu. "Antimicrobial Activity of Fatty Acid Methyl Esters of Some Members of Chenopodiaceae." Zeitschrift für Naturforschung C 63, no. 5-6 (June 1, 2008): 331–36. http://dx.doi.org/10.1515/znc-2008-5-604.
Full textLai, Yong Bin, Yu Qi Zhang, Xiu Chen, Yin Nan Yuan, Ling Ling Cai, Xin Qiao, and Meng Hong Yuan. "Reduce Cold Filter Plugging Point and Kinematic Viscosity of Cottonseed-Based Biodiesel Fuel." Advanced Materials Research 1033-1034 (October 2014): 129–32. http://dx.doi.org/10.4028/www.scientific.net/amr.1033-1034.129.
Full textWang, Ying, Cun Zhou, Guo Zheng, and Yu Sun. "Synthesis and Optimization of Trimethylolpropane Rapeseed Oil Ester." Advanced Materials Research 1015 (August 2014): 610–14. http://dx.doi.org/10.4028/www.scientific.net/amr.1015.610.
Full textGören, Ahmet C., Gökhan Bilsel, Mehmet Altun, and Fatih Satıl. "Fatty Acid Composition of Seeds of Satureja thymbra and S. cuneifolia." Zeitschrift für Naturforschung C 58, no. 7-8 (August 1, 2003): 502–4. http://dx.doi.org/10.1515/znc-2003-7-810.
Full textDissertations / Theses on the topic "Fatty Acid Methyl Ester (FAME)"
Pisac, Claudia A. "An experimental study of combustion characteristics of fatty acid methyl ester biodiesel." Thesis, University of Hertfordshire, 2014. http://hdl.handle.net/2299/14641.
Full textSekora, Nicholas Scott Lawrence Katheryn Kay Scott. "Identification of plant-parasitic nematodes using FAME analysis." Auburn, Ala, 2009. http://hdl.handle.net/10415/1806.
Full textBahceci, Humeyra. "Fatty Acid Methyl Ester Analysis Of Bacterial Isolates From Salt Lake, Turkey And Characterization Of Their Extracellular Enzymes." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12605483/index.pdf.
Full text#945
-amylase and protease. These enzymes were characterized in terms of enzyme activity, stability, optimum temperature and optimum pH. One of the isolates was identified as Bacillus pumilus, and two of them were identified as Bacillus subtilis. Other isolates were determined to be Bacillus licheniformis. All the isolates were determined to produce xylanase. Optimum temperatures and optimum pH values of xylanases were 50-55 °
C and pH 7.0-8.0. Xylanases were quite stable up to pH 8.0 and 70 °
C. Isolates were not significant cellulase producers. Four of the isolates did not produce any cellulase enzyme and the rest produced negligible amounts of cellulase. Therefore, xylanases from the isolates were promising for pulp and paper industry, which requires cellulase free and stable xylanases. All the isolates produced appreciable quantities of &
#945
-amylase. Optimum temperatures and optimum pH values of &
#945
-amylases 60-80 °
C and pH 7.0-8.0. &
#945
-Amylases were quite stable up to pH 9.0 and 80 °
C. &
#945
-Amylases from the isolates were promising for starch processing industry, which requires &
#945
-amylases stable at high temperatures and for detergent industry, which requires &
#945
-amylases stable at alkaline pH values. Considerable protease productions were achieved by all the isolates. TTG 2 was the best protease producer with 271 U/ml. Optimum temperatures and optimum pH values of proteases were 50-60 °
C and pH 7.0-7.4. Proteases were quite stable up to pH 9.0 and 80 °
C. Proteases from the isolates were promising for detergent and leather industry, in which proteases must be stable at alkaline pH values.
Westberg, Emilie. "Qualitative and Quantitative Analysis of Biodiesel Deposits Formed on a Hot Metal Surface." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-95617.
Full textBabajide, Omotola Oluwafunmilayo. "Optimisation of biodiesel production via different catalytic and process systems." Thesis, University of the Western Cape, 2011. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_3380_1365754281.
Full textThe production of biodiesel (methyl esters) from vegetable oils represents analternative means of producing liquid fuels from biomass, and one which is growing rapidly in commercial importance and relevance due to increase in petroleum prices and the environmental advantages the process offers. Commercially, biodiesel is produced from vegetable oils, as well as from waste cooking oils and animal fats. These oils are typically composed of C14-C20 fatty acid triglycerides. In order to produce a fuel that is suitable for use in diesel engines, these triglycerides are usually converted into the respective mono alkyl esters by base-catalyzed transesterification with short chain alcohol, usually methanol. In the first part of this study, the transesterification reactions of three different vegetable oils
sunflower (SFO), soybean (SBO) and waste cooking oil (WCO) with methanol was studied using potassium hydroxide as catalyst in a conventional batch process. The production of biodiesel from waste cooking oil was also studied via continuous operation systems (employing the use of low frequency ultrasonic technology and the jet loop reactor). The characterisation of the feedstock used and the methyl ester products were determined by different analytical techniques such as gas chromatography (GC), high performance liquid chromatography (HPLC) and thin layer chromatography (TLC). The effects of different reaction parameters (catalyst amount, methanol to oil ratio, reaction temperature, reaction time) on methyl ester/FAME yield were studied and the optimum reaction conditions of the different process systems were determined. The optimum reaction conditions for production of methyl esters via the batch process with the fresh oil samples (SFO and SBO) were established as follows: a reaction time of 60 min at 60 º
C with a methanol: oil ratio of 6:1 and 1.0 KOH % wt/wt of oil
while the optimum reaction conditions for the used oil (WCO) was observed at a reaction time of 90 min at 60 º
C, methanol: oil ratio of 6:1 and 1.5% KOH wt/wt of oil. The optimum reaction conditions for the transesterification of the WCO via ultrasound technology applied in a continuous system in this study were: a reaction time of 30 min, 30 º
C, 6:1 methanol/oil ratio and a 0.75 wt% (KOH) catalyst concentration. The ultrasound assisted transesterification reactions performed at optimum conditions on the different oil samples led to higher yields of methyl esters (96.8, 98.32 and 97.65 % for WCO, SFO and SBO respectively) compared to methyl esters yields (90, 95 and 96 % for WCO, SFO and SBO respectively) obtained when using conventional batch procedures. A considerable increase in yields of the methyl esters in the ultrasound assisted reaction process were obtained at room temperature, in a remarkably short time span (completed in 30 min) and with a lower amount of catalyst (0.75 wt % KOH) while the results from the continuous jet loop process system showed even better results, at an optimum reaction condition of 25 min of reaction, a methanol: oil ratio of 4:1 and a catalyst amount of 0.5 wt%. This new jet loop process allowed an added advantage of intense agitation for an efficient separation and adequate purification of the methyl esters phase at a reduced time of 30 min. The use of homogeneous catalysts in conventional processes poses many disadvantages
heterogeneous catalysts on the other hand are attractive on the basis that their use could enable the biodiesel production to be more readily performed as a continuous process resulting in low production costs. Consequently, a solid base catalyst (KNO3/FA) prepared from fly ash (obtained from Arnot coal power station, South Africa) and a new zeolite, FA/Na-X synthesized from the same fly ash were used as solid base catalysts in the transesterification reactions in the conversion of a variety of oil feedstock with methanol to methyl esters. Since fly ash is a waste product generated from the combustion of coal for power generation, its utilization in this manner would allow for its beneficiation (as a catalytic support material and raw material for zeolite synthesis) in an environmentally friendly way aimed at making the transesterification process reasonably viable. Arnot fly ash (AFA) was loaded with potassium (using potassium nitrate as precursor) via a wet impregnation method while the synthesized zeolite FA/Na-X was ion exchanged with potassium (using potassium acetate as precursor) to obtain the KNO3/FA and FA/K-X catalysts respectively. Several analytical techniques were applied for characterization purposes. The results of the XRD and XRF showed that the AFA predominantly contained some mineral phases such as quartz, mullite, calcite and lime. The high concentration of CaO in AFA was apparent to be beneficial for the use of fresh fly ash as a support material in the heterogeneous catalysed transesterification reactions. XRD characterisation of KNO3/FA results indicated that the structure of KNO3/FA gradually changed with the increase in KNO3 loading. The catalyst function was retained until the loading of KNO3 was over 10 %. IR spectra showed that the KNO3 was decomposed to K2O on the fly ash support during preparation at a calcination temperature of 500 º
C. The CO2-TPD of the KNO3/FA catalysts showed that two basic catalytic sites were generated which were responsible for high catalytic abilities observed in the transesterification reactions of sunflower oil to methyl esters. On the other hand, XRD results for the as- received zeolite synthesized from AFA showed typical diffraction peaks of zeolite NaX. SEM images of the FA /NaX showed nano platelets unique morphology different from well known pyramidal octahedral shaped crystal formation of faujasite zeolites and the morphology of the FA /KX zeolite did not show any significant difference after ion exchange. The fly ash derived zeolite NaX (FA /NaX) exhibited a high surface area of 320 m2/g. The application of the KNO3/FA catalysts in the conversion reactions to produce methyl esters (biodiesel) via transesterification reactions revealed methyl ester yield of 87.5 % with 10 wt% KNO3 at optimum reaction conditions of methanol: oil ratio of 15:1, 5 h reaction time, catalyst amount of 15 g and reaction temperature 160 °
C, while with the use of the zeolite FA/K-X catalyst, a FAME yield of 83.53 % was obtained for 8 h using the ion exchanged Arnot fly ash zeolite NaX catalyst (FA/KX) at reaction conditions of methanol: oil ratio of 6:1, catalyst amount of 3 % wt/wt of oil and reaction temperature of 65 º
C. Several studies have been carried out on the production of biodiesel using different heterogeneous catalysts but this study has been able to uniquely demonstrate the utilization of South African Class F AFA both as a catalyst support and as a raw material for zeolite synthesis
these catalyst materials subsequently applied sucessfully as solid base catalysts in the production of biodiesel.
Lane, Matthew S. "THE EFFECT OF GLYPHOSATE ON SOIL MICROBIAL COMMUNITIES." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1301068421.
Full textPourkhesalian, Ali Mohammad. "Effects of biodiesel chemical composition on the chemical and physical properties of the primary and secondary diesel particulate matter." Thesis, Queensland University of Technology, 2015. https://eprints.qut.edu.au/86757/14/86757_Ali_Mohammad_Pourkhesalian_Thesis.pdf.
Full textAlbuquerque, Anderson dos Reis. "Autoxidação de ésteres metílicos de ácidos graxos: estudo teórico-experimental." Universidade Federal da Paraíba, 2010. http://tede.biblioteca.ufpb.br:8080/handle/tede/7179.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work, computational chemistry calculations and thermal analysis experiments were performed in order to determine the oxidative stability of four fatty acid methyl esters (stearate, oleate, ricinoleate and linoleate), whose fatty chains may be inserted in oils and biodiesel. In the computational chemistry investigation the sequence of stabilities, based on the dissociation energy of the C-H bond was: C18:2 < C18:1 < C18:1;12-OH < C18:0, for the B3LYP 6-31G(d) and MP2 6-311++G(2d,p); and C18:2 < C18:1;12-OH < C18:1 < C18:0, for the B3LYP 6-311++G(2d,p). The spin density analysis allowed stating that the ricinoleate hydroxyl does not act as a pro-oxidizing, as the radicals formed in C-12 or OH are not stabilized by the unsaturation in C9, showing, thus, the behavior of a secondary alkyl alcohol in relation to these sites, whereas their allylic hydrogen display an energy similar to the oleate hydrogens. In the experimental investigation carried out TG, it was possible to observe the formation of hydroperoxides by means of the mass gain in an oxygen atmosphere for oleate, linoleate and ricinoleate, but only volatilization for the stearate. In this investigation, a small heating rate (2 ºC/min) was utilized. The kinetic calculations based on PDSC, in the dynamic and isothermal modes showed that the oxidation susceptibility is quite dependent of temperature, atmosphere and the method employed, being more critical in relation to the methyl ricinoleate. In the dynamic mode, in an air atmosphere at 110ºC, the relative susceptibility was 1 : 17 : 17 : 226 (C18:0 : C18:1 : C18:1;12-OH : C18:2). In an O2 atmosphere this proportion was 1 : 11 : 1 : 102. In the isothermal mode PDSC, at the same temperature, the proportion was 1 : 1230 : 1585 : 23001 in an air atmosphere, and 1 : 33 : 40 : 445 in an O2 atmosphere. Performing a structure/property relationship, the oxidation temperature determined at a heating rate of 10 ºC/min was shown to be strongly correlated with the BDE (C-H) obtained by DFT and MP2, confirming the relationship between the first exothermic event of PDSC in the dynamic mode and the C-H bond strength. Therefore, PDSC is shown as a accelerated testing technique able to determine the true oxidative stability of lipids, as it supplies information on the rate controlling step of auto-oxidation (L-H + R1● → L● + R1-H), whereas the Rancimat method does not supply such information. Ternary ester blends were made and their oxidative stabilities were assessed by means of PDSC in a synthetic air atmosphere. Four equations were obtained with high linear correlation coefficients (R2 > 0.98). A biodiesel representation model was also developed, expressing its main oxidation sites and molecular descriptors for several physico-chemical properties. This representation is expressed by the molecular formula Ca Hb H*c Hd** He***(O2)f (0H)g and shows as one of its advantages the easy display of biodiesel data, what makes more evident the study of structure/property relationship. Its application for the four FAME s and twenty-three blends allowed determining the oxidation temperature (OT) in an air atmosphere, based on the descriptors for allylic hydrogen (H*) and bis-allylic hydrogens (H**). From such model a program in language C was elaborated, whose input is the FAME mole fraction and whose output is the OT in a synthetic air atmosphere. Keywords: Auto-oxidation, FAME (fatty acid methyl esters), Biodiesel, PDSC, DFT.
Nesse trabalho, cálculos de química computacional e experimentos de análise térmica foram realizados para determinar a estabilidade oxidativa de quatro ésteres metílicos de ácidos graxos (estearato, oleato, ricinoleato e linoleato), cuja cadeia graxa pode estar inserida em óleos e biodiesel. Na investigação por química computacional a seqüência de estabilidade com base na energia de dissociação da ligação C-H foi: C18:2 < C18:1 < C18:1;12-OH < C18:0, para o B3LYP 6-31G(d) e MP2 6-311++G(2d,p); e C18:2 < C18:1;12-OH < C18:1 < C18:0, para o B3LYP 6-311++G(2d,p). A análise da densidade de spin permitiu afirmar que a hidroxila do ricinoleato não age como pró-oxidante, pois os radicais formados no C-12 ou OH não são estabilizados pela insaturação no C9, comportando-se, portanto, como um álcool alquílico secundário em relação a esses sítios, enquanto que seus hidrogênios alílicos possuem energia próxima aos do oleato. Na investigação experimental por TG foi possível observar a formação dos hidroperóxidos através do ganho de massa em atmosfera de oxigênio para o oleato, linoleato e ricinoleato, mas apenas volatilização para o estearato. Para tanto, uma pequena taxa de aquecimento (2 ºC/min) foi utilizada. Os cálculos cinéticos obtidos por PDSC nos modo dinâmico e isotérmico mostraram que a susceptibilidade relativa à oxidação é bastante dependente da temperatura, da atmosfera e do método empregados, sendo mais crítica em relação ao ricinoleato de metila. No modo dinâmico, em atmosfera de ar à 110ºC, a susceptibilidade relativa foi de 1 : 17 : 17 : 226 (C18:0 : C18:1 : C18:1;12-OH : C18:2). Em atmosfera de O2 essa proporção foi de 1 : 11 : 1 : 102. Na PDSC modo isotérmico nessa mesma temperatura a proporção foi de 1 : 1230 : 1585 : 23001 em atmosfera de ar, e 1 : 33 : 40 : 445 em atmosfera de O2. Fazendo uma relação estrutura-propriedade, a temperatura de oxidação na taxa de aquecimento de 10 ºC/min mostrou-se bastante correlacionada com a BDE (C-H) obtidas por DFT e MP2, confirmando a relação entre o primeiro evento exotérmico da PDSC no modo dinâmico e a força da ligação C-H. Nesse sentido, a PDSC apresenta-se como a técnica de ensaio acelerado capaz de determinar a verdadeira estabilidade oxidativa de lipídeos, pois fornece informações sobre a etapa contraladora da velocidade de autoxidação (L-H + R1● → L● + R1-H), enquanto que o método Rancimat não fornece essa informação. Foram realizadas misturas ternárias dos ésteres e verificadas suas estabilidades oxidativas por PDSC em atmosfera de ar sintético. Quatro equações foram obtidas com elevada correlação linear (R2 > 0.98). Foi desenvolvido também um modelo de representação do biodiesel expressando seus principais sítios de oxidação e descritores moleculares para diversas propriedades físico-químicas. Essa representação é dada pela fórmula molecular Ca Hb H*c Hd** He***(O2)f (0H)g e tem como uma das vantagens a simplificação de apresentação dos dados para biodieseis, o que torna mais palpável o estudo de relação estrutura-propriedade. Sua aplicação para os quatro FAMEs e vinte e três misturas permitiu determinar a temperatura de oxidação (OT) em atmosfera de ar com base nos descritores para hidrogênios alílicos (H*) e bis-alílicos (H**). A partir desse modelo foi elaborado um programa em linguagem C, tendo como dados de entrada a fração molar dos FAMEs e como saída a OT em atmosfera de ar sintético.
Mayer, Júlia Gonçalves. "Comparação da análise de ácidos graxos TRANS em biscoito por cromatografia gasosa acoplada a espectrometria de massas (cg-em) e por espectroscopia no infravermelho com transformada de fourier e reflectância total atenuada (FT-IR-ATR)." Niterói, 2018. https://app.uff.br/riuff/handle/1/5892.
Full textMade available in DSpace on 2018-03-05T14:14:06Z (GMT). No. of bitstreams: 1 JÚLIA GONÇALVES MAYER.pdf: 2883327 bytes, checksum: 6ae955490e1664e27d2c9669ad07a02c (MD5)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Os métodos analíticos utilizados para medir o percentual de ácido graxo trans (AGT) em alimentos envolvem cromatografia em fase gasosa com detecção de ionização de chama (CG-DIC), espectrometria de massas (CG-EM) e espectroscopia no infravermelho com transformada de Fourier e refletância total atenuada (FT-IR-ATR). O presente estudo teve como objetivo investigar a viabilidade e a aplicabilidade do uso das técnicas de FT-IR-ATR, sem extração, com extração prévia da gordura e após hidrólise e metilação dos ácidos graxos, para avaliar o conteúdo de AGT em biscoitos recheados e comparar os resultados obtidos com os encontrados para a determinação de ácido elaídico pela técnica de CG-EM. Foram escolhidas 9 marcas de biscoitos recheados sabor chocolate e 1 pacote de gordura vegetal hidrogenada, para ser usada como padrão secundário para análise de AGT por FT-IR-ATR. As amostras foram analisadas, inicialmente, quanto aos seus conteúdos de umidade e lipídeos totais. Para todas as amostras não foi observada concentração de umidade superior a 6,03 g/100 g. Os lipídeos totais variaram de 12,51±0,58 a 23,84±0,09 g/100 g. A presença de AGT foi identificada por FT-IR-ATR pela visualização da banda próxima a 966 cm−1 e confirmada com adição de padrão às amostras. Ao analisar as amostras de biscoito homogeneizadas e sem outro preparo, não foi viável a utilização do método de FT-IR-ATR, visto que a absorção de radiação infravermelha de substâncias da amostra se sobrepõe à absorção na região das ligações duplas trans, o que demonstra que a matriz do alimento pode influenciar na análise. Quanto a presença dos AGT, ácido elaídico (C18:1, n-9 trans) foi identificado e confirmado em todas as amostras através de CG-EM. Ao comparar a quantificação pelos métodos CG-EM e FT-IR-ATR em amostras de extratos e na forma de ácidos graxos metilados (FAME), foram observadas concentrações baixas de ácido elaídico/ácidos graxos trans (de 0,03±0,01 a 0,86±0,01 g/100 g de biscoito) obtidas pelos diferentes métodos. Não foram encontradas diferenças significativas entre as concentrações de AGT determinadas pelos três métodos testados para oito das nove amostras analisadas. O presente trabalho mostrou que a técnica de FT-IR-ATR, analisando o extrato lipídico e as amostras em forma de FAME foi adequado para estimar os teores de AGT em biscoito recheado de chocolate, visto que proporciona uma análise mais rápida, com um menor número de etapas e menor consumo de reagentes em relação às análises por CG-EM
The analytical methods used to measure the percentage of trans fatty acids in foods involve gas chromatography with flame ionization detection (GC-FID), mass spectrometry (GC-MS) and attenuated total reflectance fourier transform infrared spectroscopy (ATR-FT-IR). The aim of the present study was to investigate the feasibility and applicability of ATR-FT-IR techniques, without extraction, with previous extraction of fat and after hydrolysis and methylation of fatty acids to evaluate the content of TFA in filled biscuits, and compare the results obtained with those found for the determination of elaidic acid by the CG-MS technique. Were chosen 9 marks of chocolate filled biscuit and 1 packet of hydrogenated vegetable fat to be used as a secondary standard for AGT analysis by ATR-FT-IR. The samples were initially analyzed for their moisture contents and total lipids. For all samples, no moisture content higher than 6.03 g/100 g. Total lipids ranged from 12.51 ± 0.58 to 23.84 ± 0.09 g/100g. The presence of TFA was identified by ATR-FT-IR through the visualization of the band near 966 cm−1 and confirmed with addition of standard to the samples. When analyzing the homogenized cookie samples and without further preparation, the use of the ATR-FT-IR method was not feasible because the absorption of infrared radiation from sample substances overlaps the absorption in the region of the trans double bonds, which demonstrates that the food matrix may influence the analysis. Regarding the presence of TFA, elaidic acid (C18: 1, n-9 trans) was identified and confirmed in all samples by GC-MS. When comparing quantification by GC-MS and ATR-FT-IR in samples of extracts and in the form of fatty acids methly esters (FAME), low concentrations of elaidic acid / trans fatty acids were observed (0.03 ± 0.01 to 0.86 ± 0.01 g / 100 g of biscuit) obtained by the different methods. No significant differences were found between the concentrations of TFA determined by the three methods tested for eight of the nine samples analyzed. The present study showed that the ATR-FT-IR technique, analyzing the lipid extract and the samples in the form of FAME, was adequate to estimate the TFA contents in chocolate filled biscuit, because it provides a faster analysis with a smaller number of steps and lower toxic chemicals in relation to GC-MS analyzes
Bacha, Kenza. "Interaction entre les carburants diesel et biodiesel et les composants du système d'injection diesel." Thesis, Mulhouse, 2016. http://www.theses.fr/2016MULH4471.
Full textDiesel injection system must withstand more severe operating conditions (pressure, temperature), and be compatible with the evolution of diesel fuel, such as the introduction of Fatty Acid Methyl Esters (FAME) and use of different additives, which may affect the durability of the vehicle, following the formation of deposits. The objective of this work is to understand the mechanisms of deposit formation from fuel oxidation and determine the major parameters involved in deposit-substrate interactions (surface condition, materials, geometry, temperature...). Two studies were discussed. The first study focuses on the liquid phase accelerated oxidation of Diesel fuel, FAME and mixtures (Diesel / FAME) using PetroOxy device, the oxidation kinetic was determined for the different fuels and characterization of oxidation products was carried out using the (FTIR-ATR, ATG / DTG and GC / MS). The second study was dedicated to the reproduction of deposit on different substrates (aluminum, stainless steel, PEEK, aluminum coating on gold, silcoklean coating on stainless steel) using the Micro Coking device, and characterization of the deposit obtained in each case using (FTIR-ATR, ATG / DTG, XPS and FEG). The results of this work permit to determine the impact of FAME nature and FAME concentration on fuel oxidation stability; an hypothesis was proposed to explain deposit formation
Books on the topic "Fatty Acid Methyl Ester (FAME)"
European Committee for Standardization. Automotive fuels: Fatty acid methyl esters (FAME) for diesel engines : requirements and test methods. Brussels: CEN, European Committe for Standardization, 2004.
Find full textCastro, Ana Maria De. Fatty acid methyl ester analysis of microbial communities in biofilters inoculated with different sources. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.
Find full textFat and oil derivatives - Fatty Acid Methyl Esters (FAME): Determination of ester and linolenic acid methyl ester contents. BSI, 2003.
Find full textInstitution, British Standards, and European Committee for Standardization., eds. Fat and oil derivatives - Fatty Acid Methyl Esters (FAME): Determination of acid value. BSI, 2003.
Find full textFat and oil derivatives - Fatty Acid Methyl Esters (FAME): Determination of methanol content. BSI, 2003.
Find full textFat and oil derivatives - Fatty Acid Methyl Esters (FAME): Determination of iodine value. BSI, 2003.
Find full textInstitution, British Standards, and European Committee for Standardization., eds. Fat and oil derivatives - Fatty Acid Methyl Esters (FAME): Determination of free glycerol content. BSI, 2003.
Find full textInstitution, British Standards, and European Committee for Standardization., eds. Fat and oil derivatives - Fatty Acid Methyl Esters (FAME): Determination of oxidation stability (accelerated oxidation test). BSI, 2003.
Find full textInstitution, British Standards, and European Committee for Standardization., eds. Fat and oil derivatives - Fatty Acid Methyl Esters (FAME): Determination of potassium content by atomic absorption spectrometry. BSI, 2003.
Find full textFat and oil derivatives - Fatty Acid Methyl Esters (FAME): Determination of sodium content by atomic absorption spectrometry. BSI, 2003.
Find full textBook chapters on the topic "Fatty Acid Methyl Ester (FAME)"
Cavigelli, Michel A., G. Philip Robertson, and Michael J. Klug. "Fatty acid methyl ester (FAME) profiles as measures of soil microbial community structure." In The Significance and Regulation of Soil Biodiversity, 99–113. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0479-1_8.
Full textSagala, T. S. H., S. Hartini, and H. F. Prasetyo. "Root cause analysis fulfillment upon the implication of Fatty Acid Methyl Ester (FAME) as biofuel for sustainable energy in Eastern Java and Bali Nusa Tenggara (MOR V)." In Contemporary Research on Business and Management, 232–36. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003196013-57.
Full textSulaiman, Sarina. "Identification of Fatty Acid Methyl Ester in Palm Oil Using Gas Chromatography-Mass Spectrometer." In Multifaceted Protocol in Biotechnology, 63–74. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2257-0_6.
Full textAji, Aminah Qayyimah Mohd, and Mariyamni Awang. "Palm Fatty Acid Methyl Ester in Reducing Interfacial Tension in CO2–Crude Oil Systems." In ICIPEG 2016, 217–27. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3650-7_18.
Full textLi, Junge, Xiaocao Yu, Bin Liu, Tiegang Hu, and Xibin Wang. "Experimental Research on Macroscopic and Microscopic Characteristics of Ethanol-Fatty Acid Methyl Ester Blends Sprays." In Lecture Notes in Electrical Engineering, 187–96. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3527-2_17.
Full textLapuerta, M., and L. Canoira. "The Suitability of Fatty Acid Methyl Esters (FAME) as Blending Agents in Jet A-1." In Biofuels for Aviation, 47–84. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-804568-8.00004-4.
Full textSukpancharoen, Somboon, Natacha Phetyim, Chaiviwat Krittasin, and Manatsanan Chanthasuwannasin. "Experimental Optimization of Castor Oil Transesterification by Central Composite Design for Biodiesel Production." In Advances in Energy Research and Development. IOS Press, 2022. http://dx.doi.org/10.3233/aerd220034.
Full textChanga, Taity, Jane Asiyo Okalebo, and Shaokun Wang. "Spatio-Temporal Dynamics of Soil Microbial Communities in a Pasture: A Case Study of Bromus inermis Pasture in Eastern Nebraska." In Agrometeorology [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93548.
Full textSebastião Cidreira Vieira, José, Wilame Silva Castro, Makson Rangel de Melo Rodrigues, and Neemias da Silva Nascimento. "Processing of Gong Oil (Pachymerus nucleorum) to Obtain Biodiesel by Methyl Route." In Elaeis guineensis. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.97721.
Full textCalvert, Jack, Abdelwahid Mellouki, John Orlando, Michael Pilling, and Timothy Wallington. "Rate Coefficients and Mechanisms of Atmospheric Oxidation of the Esters." In Mechanisms of Atmospheric Oxidation of the Oxygenates. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199767076.003.0010.
Full textConference papers on the topic "Fatty Acid Methyl Ester (FAME)"
Bow, Yohandri, Abu Hasan, Rusdianasari Rusdianasari, Zakaria Zakaria, Bambang Irawan, and Nedia Sandika. "Biodiesel from Pyrolysis Fatty Acid Methyl Ester (FAME) using Fly Ash as a Catalyst." In 5th FIRST T1 T2 2021 International Conference (FIRST-T1-T2 2021). Paris, France: Atlantis Press, 2022. http://dx.doi.org/10.2991/ahe.k.220205.030.
Full textSoloiu, Valentin, Jeffery Lewis, April Covington, Brian Vlcek, and Norman Schmidt. "The Influence of Peanut Fatty Acid Methyl Ester Blends on Combustion in an Indirect Injection Diesel Engine." In ASME 2011 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/icef2011-60053.
Full textYusabri, Muhammad Yerizam, and Aida Syarif. "Characterization of Blending Composition Variations in Fatty Acid Methyl Ester (FAME) Biofuels With Diesel to Biodiesel." In 4th Forum in Research, Science, and Technology (FIRST-T1-T2-2020). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/ahe.k.210205.001.
Full textMolie`re, Michel, Elvio Panarotto, Maher Aboujaib, Jean Michel Bisseaud, Anthony Campbell, Joseph Citeno, Pierre-Andre´ Maire, and Laurent Ducrest. "Gas Turbines in Alternative Fuel Applications: Biodiesel Field Test." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27212.
Full textKumar Gogoi, Tapan, and Jyotirmoy Kakati. "Characterization of Biodiesel Produced From Terminalia Seed Oil and Engine Performance Evaluation With 10% and 20% Blending." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66624.
Full textKakati, Jyotirmoy, Tapan K. Gogoi, Sukhamoy Pal, and Ujjwal K. Saha. "Potentiality of Yellow Oleander (Thevetia Peruviana) Seed Oil as an Alternative Diesel Fuel in Compression Ignition Engines." In ASME 2021 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/icef2021-67419.
Full textWang, Weijing, Sandeep Gowdagiri, and Matthew A. Oehlschlaeger. "Autoignition Variation of Biodiesel Surrogates: Influence of Saturation." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64956.
Full textAnderson, Kevin R., Christopher McNamara, and Ariel Gatti. "Analysis of a Multi-Cascade Methyl Linoleate / SCO2 / Transcritical CO2 / R-410A Refrigeration Cycle for Use in High Temperature High Pressure Environments." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65547.
Full textAnderson, Kevin R., and Trevor Steele. "Analysis of a FAME/MLL Screw Multi-Stage Compressor for High Temperature, High Pressure Vapor Compression Refrigeration Cycle." In ASME 2020 Fluids Engineering Division Summer Meeting collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/fedsm2020-20002.
Full textPucher, Greg, William Allan, and Pierre Poitras. "Emissions From a Gas Turbine Sector Rig Operated With Synthetic Aviation and Biodiesel Fuel." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-22494.
Full textReports on the topic "Fatty Acid Methyl Ester (FAME)"
Morris, Jr, Shardo Robert W., Higgins James, Cook Kim, Tanner Rhonda, West Sam, Shafer Zachary, Kelley Linda, and Jennifer. Evaluation of the Impact of Fatty Acid Methyl Ester (FAME) Contamination on the Thermal Stability of Jet A. Fort Belvoir, VA: Defense Technical Information Center, November 2013. http://dx.doi.org/10.21236/ada594760.
Full textVan Wychen, Stefanie, Kelsey Ramirez, and Lieve M. L. Laurens. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP). Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1118085.
Full textWilson, George R. Diesel Lubricity Additive Effect on Jet Fuel Thermal Oxidative Stability with Supplementary Information on Fatty Acid Methyl Ester and Jet Engine Nozzle Performance. Coordinating Research Council, Inc., August 2011. http://dx.doi.org/10.21813/crcav-03-04.
Full text