To see the other types of publications on this topic, follow the link: Fatty Acid Methyl Ester (FAME).

Dissertations / Theses on the topic 'Fatty Acid Methyl Ester (FAME)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 24 dissertations / theses for your research on the topic 'Fatty Acid Methyl Ester (FAME).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Pisac, Claudia A. "An experimental study of combustion characteristics of fatty acid methyl ester biodiesel." Thesis, University of Hertfordshire, 2014. http://hdl.handle.net/2299/14641.

Full text
Abstract:
The thesis presents an experimental investigation of combustion performance and emissions of waste cooking oil (WCO) based biodiesel. To evaluate the comparative performance of biodiesel and diesel, combustions tests were conducted using Continuous Combustion rig (CCR) and Land Rover VM diesel engine. Firstly, physical properties of WCO biodiesel and diesel samples were measured in the laboratory. Elemental analysis of WCO biodiesel showed that there are differences between the functional groups in diesel and biodiesel which lead to major differences in the combustion characteristics of the two fuel types. It was found that biodiesel had 10% lower carbon content, almost no sulphur content for biodiesel and up to 12% more oxygen content compared with diesel. This explains the lower caloric value for WCO biodiesel (up to l8 %) compared with diesel. However, higher oxygen content and double bounds in WCO biodiesel increase its susceptibility to oxidation. The CCR test results showed an increase in combustion gas temperature with the increases in biodiesel blend ratio in diesel. This was due to a faster reaction rate for biodiesel than that of diesel leading to a faster brakeage of the hydrocarbon chain to release more heat. The engine tests were performed to measure the torque and emissions for different engine speeds and loads. In general a decrease in engine torque with up to 9% for biodiesel was observed, which was due to the lower calorific value of biodiesel compared with that of diesel. The brake specific fuel consumption (BSFC) increased as the biodiesel blend ratio in diesel increases due a greater mass of fuel being injected at a given injection pressure, compared with diesel. Using WCO blends ratio up to 75% in diesel showed a reduction in exhaust emission compared with diesel, however, at the cost of increased fuel consumption. A common conclusion can be drawn in favour of the WCO biodiesel as being a greener alternative to petro-diesel when used in blend with diesel. However, due to large variations in the biomass used for biodiesel production could lead to variations in physical and chemical properties between biodiesel produced from different biomass. Therefore more stringent standards need to be imposed for biodiesel quality in order to diminish the effect of variation in physicochemical properties on engine performance and emissions. The future work in developing standard test procedures for establishing fuel properties and limits/targets would be beneficial in using a large amount of waste cooking oil in the production of biodiesel, thus contributing to reduction in CO2 and waste minimisation.
APA, Harvard, Vancouver, ISO, and other styles
2

Sekora, Nicholas Scott Lawrence Katheryn Kay Scott. "Identification of plant-parasitic nematodes using FAME analysis." Auburn, Ala, 2009. http://hdl.handle.net/10415/1806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bahceci, Humeyra. "Fatty Acid Methyl Ester Analysis Of Bacterial Isolates From Salt Lake, Turkey And Characterization Of Their Extracellular Enzymes." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12605483/index.pdf.

Full text
Abstract:
In this study, 11 bacterial isolates from Salt Lake,Turkey were identified by using fatty acid methyl ester (FAME) analysis. They were screened for production of industrially important enzymes xylanase, cellulase, &
#945
-amylase and protease. These enzymes were characterized in terms of enzyme activity, stability, optimum temperature and optimum pH. One of the isolates was identified as Bacillus pumilus, and two of them were identified as Bacillus subtilis. Other isolates were determined to be Bacillus licheniformis. All the isolates were determined to produce xylanase. Optimum temperatures and optimum pH values of xylanases were 50-55 °
C and pH 7.0-8.0. Xylanases were quite stable up to pH 8.0 and 70 °
C. Isolates were not significant cellulase producers. Four of the isolates did not produce any cellulase enzyme and the rest produced negligible amounts of cellulase. Therefore, xylanases from the isolates were promising for pulp and paper industry, which requires cellulase free and stable xylanases. All the isolates produced appreciable quantities of &
#945
-amylase. Optimum temperatures and optimum pH values of &
#945
-amylases 60-80 °
C and pH 7.0-8.0. &
#945
-Amylases were quite stable up to pH 9.0 and 80 °
C. &
#945
-Amylases from the isolates were promising for starch processing industry, which requires &
#945
-amylases stable at high temperatures and for detergent industry, which requires &
#945
-amylases stable at alkaline pH values. Considerable protease productions were achieved by all the isolates. TTG 2 was the best protease producer with 271 U/ml. Optimum temperatures and optimum pH values of proteases were 50-60 °
C and pH 7.0-7.4. Proteases were quite stable up to pH 9.0 and 80 °
C. Proteases from the isolates were promising for detergent and leather industry, in which proteases must be stable at alkaline pH values.
APA, Harvard, Vancouver, ISO, and other styles
4

Westberg, Emilie. "Qualitative and Quantitative Analysis of Biodiesel Deposits Formed on a Hot Metal Surface." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-95617.

Full text
Abstract:
This thesis aims to investigate the formation of deposits from thermally degraded biodiesel on a hot metal surface under the influence of sodium or copper contaminations. Biodiesel or Fatty Acid Methyl Esters (FAMEs) is a widely utilized biofuel with the potential to replace fossil fuels, however, issues regarding the thermal and oxidative stability prevent the progress of biodiesel for utilization as vehicle fuel. The thermal degradation of biodiesel causes formation of deposits often occurring in the fuel injectors, which could result in reduced engine efficiency, increased emissions and engine wear. However, still have no standard method for evaluation of a fuels’ tendency to form deposits been developed. In this study biodiesel deposits have been formed on aluminum test tubes utilizing a Hot Liquid Process Simulator (HLPS), an instrument based on the principle of the Jet Fuel Thermal Oxidation Tester (JFTOT). Quantitative and qualitative analyses have been made utilizing an array of techniques including Scanning Electron Microscopy (SEM), Gas Chromatography Mass Spectrometry (GCMS) and Attenuated Total Reflectance Fourier Transform Infrared Spectrometry (ATR-FTIR). A multi-factorial trial investigating the effects of sodium hydroxide and copper contaminations at trace levels and the impact of a paraffin inhibitor copolymer additive on three different FAME products, two derived from rapeseed oil and one from waste cooking oil as well as a biodiesel blend with mineral diesel, was conducted.The results exhibited that FAMEs are the major precursor to deposit formation in diesel fuel. The SEM analyses exploited the nature of FAME deposits forming porous structures on hot metal surfaces. Sodium hydroxide proved to participate in the deposit formation by forming carboxylic salts. However, the copper contamination exhibited no enhancing effect on the deposits, possibly due to interference of the blank oil in which copper was received. The paraffin inhibitor functioning as a crystal modifier had significant reducing effect on the deposit formation for all biodiesel samples except for the FAME product derived from waste cooking oil. Further studies are needed in order to investigate the influence of glycerin and water residues to the biodiesel deposit formation. Mechanisms involving oxidative or thermal peroxide formation, polymerization and disintegration have been suggested as degradation pathways for biodiesel. The involvement of oxidation intermediates, peroxides, was confirmed by the experiments performed in this thesis. However, the mechanisms of biodiesel deposit formation are complex and hard to study as the deposits are seemingly insoluble. Nevertheless, ATR-FTIR in combination with JFTOT-processing has potential as standard method for evaluation of deposit forming tendencies of biodiesel.
APA, Harvard, Vancouver, ISO, and other styles
5

Babajide, Omotola Oluwafunmilayo. "Optimisation of biodiesel production via different catalytic and process systems." Thesis, University of the Western Cape, 2011. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_3380_1365754281.

Full text
Abstract:

The production of biodiesel (methyl esters) from vegetable oils represents analternative means of producing liquid fuels from biomass, and one which is growing rapidly in commercial importance and relevance due to increase in petroleum prices and the environmental advantages the process offers. Commercially, biodiesel is produced from vegetable oils, as well as from waste cooking oils and animal fats. These oils are typically composed of C14-C20 fatty acid triglycerides. In order to produce a fuel that is suitable for use in diesel engines, these triglycerides are usually converted into the respective mono alkyl esters by base-catalyzed transesterification with short chain alcohol, usually methanol. In the first part of this study, the transesterification reactions of three different vegetable oils
sunflower (SFO), soybean (SBO) and waste cooking oil (WCO) with methanol was studied using potassium hydroxide as catalyst in a conventional batch process. The production of biodiesel from waste cooking oil was also studied via continuous operation systems (employing the use of low frequency ultrasonic technology and the jet loop reactor). The characterisation of the feedstock used and the methyl ester products were determined by different analytical techniques such as gas chromatography (GC), high performance liquid chromatography (HPLC) and thin layer chromatography (TLC). The effects of different reaction parameters (catalyst amount, methanol to oil ratio, reaction temperature, reaction time) on methyl ester/FAME yield were studied and the optimum reaction conditions of the different process systems were determined. The optimum reaction conditions for production of methyl esters via the batch process with the fresh oil samples (SFO and SBO) were established as follows: a reaction time of 60 min at 60 º
C with a methanol: oil ratio of 6:1 and 1.0 KOH % wt/wt of oil
while the optimum reaction conditions for the used oil (WCO) was observed at a reaction time of 90 min at 60 º
C, methanol: oil ratio of 6:1 and 1.5% KOH wt/wt of oil. The optimum reaction conditions for the transesterification of the WCO via ultrasound technology applied in a continuous system in this study were: a reaction time of 30 min, 30 º
C, 6:1 methanol/oil ratio and a 0.75 wt% (KOH) catalyst concentration. The ultrasound assisted transesterification reactions performed at optimum conditions on the different oil samples led to higher yields of methyl esters (96.8, 98.32 and 97.65 % for WCO, SFO and SBO respectively) compared to methyl esters yields (90, 95 and 96 % for WCO, SFO and SBO respectively) obtained when using conventional batch procedures. A considerable increase in yields of the methyl esters in the ultrasound assisted reaction process were obtained at room temperature, in a remarkably short time span (completed in 30 min) and with a lower amount of catalyst (0.75 wt % KOH) while the results from the continuous jet loop process system showed even better results, at an optimum reaction condition of 25 min of reaction, a methanol: oil ratio of 4:1 and a catalyst amount of 0.5 wt%. This new jet loop process allowed an added advantage of intense agitation for an efficient separation and adequate purification of the methyl esters phase at a reduced time of 30 min. The use of homogeneous catalysts in conventional processes poses many disadvantages
heterogeneous catalysts on the other hand are attractive on the basis that their use could enable the biodiesel production to be more readily performed as a continuous process resulting in low production costs. Consequently, a solid base catalyst (KNO3/FA) prepared from fly ash (obtained from Arnot coal power station, South Africa) and a new zeolite, FA/Na-X synthesized from the same fly ash were used as solid base catalysts in the transesterification reactions in the conversion of a variety of oil feedstock with methanol to methyl esters. Since fly ash is a waste product generated from the combustion of coal for power generation, its utilization in this manner would allow for its beneficiation (as a catalytic support material and raw material for zeolite synthesis) in an environmentally friendly way aimed at making the transesterification process reasonably viable. Arnot fly ash (AFA) was loaded with potassium (using potassium nitrate as precursor) via a wet impregnation method while the synthesized zeolite FA/Na-X was ion exchanged with potassium (using potassium acetate as precursor) to obtain the KNO3/FA and FA/K-X catalysts respectively. Several analytical techniques were applied for characterization purposes. The results of the XRD and XRF showed that the AFA predominantly contained some mineral phases such as quartz, mullite, calcite and lime. The high concentration of CaO in AFA was apparent to be beneficial for the use of fresh fly ash as a support material in the heterogeneous catalysed transesterification reactions. XRD characterisation of KNO3/FA results indicated that the structure of KNO3/FA gradually changed with the increase in KNO3 loading. The catalyst function was retained until the loading of KNO3 was over 10 %. IR spectra showed that the KNO3 was decomposed to K2O on the fly ash support during preparation at a calcination temperature of 500 º
C. The CO2-TPD of the KNO3/FA catalysts showed that two basic catalytic sites were generated which were responsible for high catalytic abilities observed in the transesterification reactions of sunflower oil to methyl esters. On the other hand, XRD results for the as- received zeolite synthesized from AFA showed typical diffraction peaks of zeolite NaX. SEM images of the FA /NaX showed nano platelets unique morphology different from well known pyramidal octahedral shaped crystal formation of faujasite zeolites and the morphology of the FA /KX zeolite did not show any significant difference after ion exchange. The fly ash derived zeolite NaX (FA /NaX) exhibited a high surface area of 320 m2/g. The application of the KNO3/FA catalysts in the conversion reactions to produce methyl esters (biodiesel) via transesterification reactions revealed methyl ester yield of 87.5 % with 10 wt% KNO3 at optimum reaction conditions of methanol: oil ratio of 15:1, 5 h reaction time, catalyst amount of 15 g and reaction temperature 160 °
C, while with the use of the zeolite FA/K-X catalyst, a FAME yield of 83.53 % was obtained for 8 h using the ion exchanged Arnot fly ash zeolite NaX catalyst (FA/KX) at reaction conditions of methanol: oil ratio of 6:1, catalyst amount of 3 % wt/wt of oil and reaction temperature of 65 º
C. Several studies have been carried out on the production of biodiesel using different heterogeneous catalysts but this study has been able to uniquely demonstrate the utilization of South African Class F AFA both as a catalyst support and as a raw material for zeolite synthesis
these catalyst materials subsequently applied sucessfully as solid base catalysts in the production of biodiesel.

APA, Harvard, Vancouver, ISO, and other styles
6

Lane, Matthew S. "THE EFFECT OF GLYPHOSATE ON SOIL MICROBIAL COMMUNITIES." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1301068421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pourkhesalian, Ali Mohammad. "Effects of biodiesel chemical composition on the chemical and physical properties of the primary and secondary diesel particulate matter." Thesis, Queensland University of Technology, 2015. https://eprints.qut.edu.au/86757/14/86757_Ali_Mohammad_Pourkhesalian_Thesis.pdf.

Full text
Abstract:
This thesis improves our insight towards the effects of using biodiesels on the particulate matter emission of diesel engines and contributes to our understanding of their potential adverse health effects. The novelty of this project is the use of biodiesel fuel with controlled chemical composition that enables us to relate changes of physiochemical properties of particles to specific properties of the biodiesel. For the first time, the possibility of a correlation of the volatility and the Reactive Oxygen Species concentration of the particles is investigated versus the saturation, oxygen content and carbon chain length of the fuel.
APA, Harvard, Vancouver, ISO, and other styles
8

Albuquerque, Anderson dos Reis. "Autoxidação de ésteres metílicos de ácidos graxos: estudo teórico-experimental." Universidade Federal da Paraí­ba, 2010. http://tede.biblioteca.ufpb.br:8080/handle/tede/7179.

Full text
Abstract:
Made available in DSpace on 2015-05-14T13:21:49Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 3150509 bytes, checksum: cf7874482452595653f1051a5680bdf0 (MD5) Previous issue date: 2010-09-05
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work, computational chemistry calculations and thermal analysis experiments were performed in order to determine the oxidative stability of four fatty acid methyl esters (stearate, oleate, ricinoleate and linoleate), whose fatty chains may be inserted in oils and biodiesel. In the computational chemistry investigation the sequence of stabilities, based on the dissociation energy of the C-H bond was: C18:2 < C18:1 < C18:1;12-OH < C18:0, for the B3LYP 6-31G(d) and MP2 6-311++G(2d,p); and C18:2 < C18:1;12-OH < C18:1 < C18:0, for the B3LYP 6-311++G(2d,p). The spin density analysis allowed stating that the ricinoleate hydroxyl does not act as a pro-oxidizing, as the radicals formed in C-12 or OH are not stabilized by the unsaturation in C9, showing, thus, the behavior of a secondary alkyl alcohol in relation to these sites, whereas their allylic hydrogen display an energy similar to the oleate hydrogens. In the experimental investigation carried out TG, it was possible to observe the formation of hydroperoxides by means of the mass gain in an oxygen atmosphere for oleate, linoleate and ricinoleate, but only volatilization for the stearate. In this investigation, a small heating rate (2 ºC/min) was utilized. The kinetic calculations based on PDSC, in the dynamic and isothermal modes showed that the oxidation susceptibility is quite dependent of temperature, atmosphere and the method employed, being more critical in relation to the methyl ricinoleate. In the dynamic mode, in an air atmosphere at 110ºC, the relative susceptibility was 1 : 17 : 17 : 226 (C18:0 : C18:1 : C18:1;12-OH : C18:2). In an O2 atmosphere this proportion was 1 : 11 : 1 : 102. In the isothermal mode PDSC, at the same temperature, the proportion was 1 : 1230 : 1585 : 23001 in an air atmosphere, and 1 : 33 : 40 : 445 in an O2 atmosphere. Performing a structure/property relationship, the oxidation temperature determined at a heating rate of 10 ºC/min was shown to be strongly correlated with the BDE (C-H) obtained by DFT and MP2, confirming the relationship between the first exothermic event of PDSC in the dynamic mode and the C-H bond strength. Therefore, PDSC is shown as a accelerated testing technique able to determine the true oxidative stability of lipids, as it supplies information on the rate controlling step of auto-oxidation (L-H + R1● → L● + R1-H), whereas the Rancimat method does not supply such information. Ternary ester blends were made and their oxidative stabilities were assessed by means of PDSC in a synthetic air atmosphere. Four equations were obtained with high linear correlation coefficients (R2 > 0.98). A biodiesel representation model was also developed, expressing its main oxidation sites and molecular descriptors for several physico-chemical properties. This representation is expressed by the molecular formula Ca Hb H*c Hd** He***(O2)f (0H)g and shows as one of its advantages the easy display of biodiesel data, what makes more evident the study of structure/property relationship. Its application for the four FAME s and twenty-three blends allowed determining the oxidation temperature (OT) in an air atmosphere, based on the descriptors for allylic hydrogen (H*) and bis-allylic hydrogens (H**). From such model a program in language C was elaborated, whose input is the FAME mole fraction and whose output is the OT in a synthetic air atmosphere. Keywords: Auto-oxidation, FAME (fatty acid methyl esters), Biodiesel, PDSC, DFT.
Nesse trabalho, cálculos de química computacional e experimentos de análise térmica foram realizados para determinar a estabilidade oxidativa de quatro ésteres metílicos de ácidos graxos (estearato, oleato, ricinoleato e linoleato), cuja cadeia graxa pode estar inserida em óleos e biodiesel. Na investigação por química computacional a seqüência de estabilidade com base na energia de dissociação da ligação C-H foi: C18:2 < C18:1 < C18:1;12-OH < C18:0, para o B3LYP 6-31G(d) e MP2 6-311++G(2d,p); e C18:2 < C18:1;12-OH < C18:1 < C18:0, para o B3LYP 6-311++G(2d,p). A análise da densidade de spin permitiu afirmar que a hidroxila do ricinoleato não age como pró-oxidante, pois os radicais formados no C-12 ou OH não são estabilizados pela insaturação no C9, comportando-se, portanto, como um álcool alquílico secundário em relação a esses sítios, enquanto que seus hidrogênios alílicos possuem energia próxima aos do oleato. Na investigação experimental por TG foi possível observar a formação dos hidroperóxidos através do ganho de massa em atmosfera de oxigênio para o oleato, linoleato e ricinoleato, mas apenas volatilização para o estearato. Para tanto, uma pequena taxa de aquecimento (2 ºC/min) foi utilizada. Os cálculos cinéticos obtidos por PDSC nos modo dinâmico e isotérmico mostraram que a susceptibilidade relativa à oxidação é bastante dependente da temperatura, da atmosfera e do método empregados, sendo mais crítica em relação ao ricinoleato de metila. No modo dinâmico, em atmosfera de ar à 110ºC, a susceptibilidade relativa foi de 1 : 17 : 17 : 226 (C18:0 : C18:1 : C18:1;12-OH : C18:2). Em atmosfera de O2 essa proporção foi de 1 : 11 : 1 : 102. Na PDSC modo isotérmico nessa mesma temperatura a proporção foi de 1 : 1230 : 1585 : 23001 em atmosfera de ar, e 1 : 33 : 40 : 445 em atmosfera de O2. Fazendo uma relação estrutura-propriedade, a temperatura de oxidação na taxa de aquecimento de 10 ºC/min mostrou-se bastante correlacionada com a BDE (C-H) obtidas por DFT e MP2, confirmando a relação entre o primeiro evento exotérmico da PDSC no modo dinâmico e a força da ligação C-H. Nesse sentido, a PDSC apresenta-se como a técnica de ensaio acelerado capaz de determinar a verdadeira estabilidade oxidativa de lipídeos, pois fornece informações sobre a etapa contraladora da velocidade de autoxidação (L-H + R1● → L● + R1-H), enquanto que o método Rancimat não fornece essa informação. Foram realizadas misturas ternárias dos ésteres e verificadas suas estabilidades oxidativas por PDSC em atmosfera de ar sintético. Quatro equações foram obtidas com elevada correlação linear (R2 > 0.98). Foi desenvolvido também um modelo de representação do biodiesel expressando seus principais sítios de oxidação e descritores moleculares para diversas propriedades físico-químicas. Essa representação é dada pela fórmula molecular Ca Hb H*c Hd** He***(O2)f (0H)g e tem como uma das vantagens a simplificação de apresentação dos dados para biodieseis, o que torna mais palpável o estudo de relação estrutura-propriedade. Sua aplicação para os quatro FAMEs e vinte e três misturas permitiu determinar a temperatura de oxidação (OT) em atmosfera de ar com base nos descritores para hidrogênios alílicos (H*) e bis-alílicos (H**). A partir desse modelo foi elaborado um programa em linguagem C, tendo como dados de entrada a fração molar dos FAMEs e como saída a OT em atmosfera de ar sintético.
APA, Harvard, Vancouver, ISO, and other styles
9

Mayer, Júlia Gonçalves. "Comparação da análise de ácidos graxos TRANS em biscoito por cromatografia gasosa acoplada a espectrometria de massas (cg-em) e por espectroscopia no infravermelho com transformada de fourier e reflectância total atenuada (FT-IR-ATR)." Niterói, 2018. https://app.uff.br/riuff/handle/1/5892.

Full text
Abstract:
Submitted by Biblioteca da Faculdade de Farmácia (bff@ndc.uff.br) on 2018-03-05T14:14:06Z No. of bitstreams: 1 JÚLIA GONÇALVES MAYER.pdf: 2883327 bytes, checksum: 6ae955490e1664e27d2c9669ad07a02c (MD5)
Made available in DSpace on 2018-03-05T14:14:06Z (GMT). No. of bitstreams: 1 JÚLIA GONÇALVES MAYER.pdf: 2883327 bytes, checksum: 6ae955490e1664e27d2c9669ad07a02c (MD5)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Os métodos analíticos utilizados para medir o percentual de ácido graxo trans (AGT) em alimentos envolvem cromatografia em fase gasosa com detecção de ionização de chama (CG-DIC), espectrometria de massas (CG-EM) e espectroscopia no infravermelho com transformada de Fourier e refletância total atenuada (FT-IR-ATR). O presente estudo teve como objetivo investigar a viabilidade e a aplicabilidade do uso das técnicas de FT-IR-ATR, sem extração, com extração prévia da gordura e após hidrólise e metilação dos ácidos graxos, para avaliar o conteúdo de AGT em biscoitos recheados e comparar os resultados obtidos com os encontrados para a determinação de ácido elaídico pela técnica de CG-EM. Foram escolhidas 9 marcas de biscoitos recheados sabor chocolate e 1 pacote de gordura vegetal hidrogenada, para ser usada como padrão secundário para análise de AGT por FT-IR-ATR. As amostras foram analisadas, inicialmente, quanto aos seus conteúdos de umidade e lipídeos totais. Para todas as amostras não foi observada concentração de umidade superior a 6,03 g/100 g. Os lipídeos totais variaram de 12,51±0,58 a 23,84±0,09 g/100 g. A presença de AGT foi identificada por FT-IR-ATR pela visualização da banda próxima a 966 cm−1 e confirmada com adição de padrão às amostras. Ao analisar as amostras de biscoito homogeneizadas e sem outro preparo, não foi viável a utilização do método de FT-IR-ATR, visto que a absorção de radiação infravermelha de substâncias da amostra se sobrepõe à absorção na região das ligações duplas trans, o que demonstra que a matriz do alimento pode influenciar na análise. Quanto a presença dos AGT, ácido elaídico (C18:1, n-9 trans) foi identificado e confirmado em todas as amostras através de CG-EM. Ao comparar a quantificação pelos métodos CG-EM e FT-IR-ATR em amostras de extratos e na forma de ácidos graxos metilados (FAME), foram observadas concentrações baixas de ácido elaídico/ácidos graxos trans (de 0,03±0,01 a 0,86±0,01 g/100 g de biscoito) obtidas pelos diferentes métodos. Não foram encontradas diferenças significativas entre as concentrações de AGT determinadas pelos três métodos testados para oito das nove amostras analisadas. O presente trabalho mostrou que a técnica de FT-IR-ATR, analisando o extrato lipídico e as amostras em forma de FAME foi adequado para estimar os teores de AGT em biscoito recheado de chocolate, visto que proporciona uma análise mais rápida, com um menor número de etapas e menor consumo de reagentes em relação às análises por CG-EM
The analytical methods used to measure the percentage of trans fatty acids in foods involve gas chromatography with flame ionization detection (GC-FID), mass spectrometry (GC-MS) and attenuated total reflectance fourier transform infrared spectroscopy (ATR-FT-IR). The aim of the present study was to investigate the feasibility and applicability of ATR-FT-IR techniques, without extraction, with previous extraction of fat and after hydrolysis and methylation of fatty acids to evaluate the content of TFA in filled biscuits, and compare the results obtained with those found for the determination of elaidic acid by the CG-MS technique. Were chosen 9 marks of chocolate filled biscuit and 1 packet of hydrogenated vegetable fat to be used as a secondary standard for AGT analysis by ATR-FT-IR. The samples were initially analyzed for their moisture contents and total lipids. For all samples, no moisture content higher than 6.03 g/100 g. Total lipids ranged from 12.51 ± 0.58 to 23.84 ± 0.09 g/100g. The presence of TFA was identified by ATR-FT-IR through the visualization of the band near 966 cm−1 and confirmed with addition of standard to the samples. When analyzing the homogenized cookie samples and without further preparation, the use of the ATR-FT-IR method was not feasible because the absorption of infrared radiation from sample substances overlaps the absorption in the region of the trans double bonds, which demonstrates that the food matrix may influence the analysis. Regarding the presence of TFA, elaidic acid (C18: 1, n-9 trans) was identified and confirmed in all samples by GC-MS. When comparing quantification by GC-MS and ATR-FT-IR in samples of extracts and in the form of fatty acids methly esters (FAME), low concentrations of elaidic acid / trans fatty acids were observed (0.03 ± 0.01 to 0.86 ± 0.01 g / 100 g of biscuit) obtained by the different methods. No significant differences were found between the concentrations of TFA determined by the three methods tested for eight of the nine samples analyzed. The present study showed that the ATR-FT-IR technique, analyzing the lipid extract and the samples in the form of FAME, was adequate to estimate the TFA contents in chocolate filled biscuit, because it provides a faster analysis with a smaller number of steps and lower toxic chemicals in relation to GC-MS analyzes
APA, Harvard, Vancouver, ISO, and other styles
10

Bacha, Kenza. "Interaction entre les carburants diesel et biodiesel et les composants du système d'injection diesel." Thesis, Mulhouse, 2016. http://www.theses.fr/2016MULH4471.

Full text
Abstract:
Le système d’injection Diesel doit résister à des conditions opératoires (pression, température) de plus en plus sévères, et être compatible avec les évolutions du carburant diesel, telles que l’introduction des Esters Méthyliques d’Acide Gras (EMAG) et l’utilisation de différents additifs, qui peuvent affecter la durabilité des véhicules, suite à la formation de dépôts. L’objectif des travaux de cette thèse est la compréhension des mécanismes de formation des dépôts issus de l’oxydation des carburants et la détermination des paramètres majeurs participant aux interactions dépôts-substrats (état de surface, matériaux, géométrie, thermique…). Deux études ont été abordées dans cette thèse. La première étude porte sur l’oxydation accélérée des carburants Diesel, des EMAG et des mélanges Diesel/EMAG en phase liquide en utilisant le moyen d’essai PetroOxy, la cinétique d’oxydation a été déterminée pour les différents carburants et la caractérisation des produits d’oxydation a été effectuée utilisant les moyens d’analyse (FTIR-ATR, ATG/DTG et GC/MS). La seconde étude est dédiée à la reproduction du dépôt sur les substrats en (aluminium, acier inoxydable, PEEK, revêtement or sur aluminium, revêtement silcoklean sur acier inoxydable) en utilisant le moyen d’essai Micro Cokage et la caractérisation du dépôt obtenu dans chaque cas en utilisant les moyens d’analyse (FTIR-ATR, ATG/DTG, FEG et XPS). Les résultats de ces travaux ont permis de déterminer l’impact de la nature et du taux d’EMAG ajouté au Diesel sur la stabilité à l’oxydation des carburants ; de mettre en place une hypothèse de formation de dépôt à partir de l’oxydation des carburants en phase liquide jusqu’à la formation de nanoparticules de dépôt sphériques ; et déterminer l’impact du substrat sur la formation et l’adhésion du dépôt à la surface du matériau
Diesel injection system must withstand more severe operating conditions (pressure, temperature), and be compatible with the evolution of diesel fuel, such as the introduction of Fatty Acid Methyl Esters (FAME) and use of different additives, which may affect the durability of the vehicle, following the formation of deposits. The objective of this work is to understand the mechanisms of deposit formation from fuel oxidation and determine the major parameters involved in deposit-substrate interactions (surface condition, materials, geometry, temperature...). Two studies were discussed. The first study focuses on the liquid phase accelerated oxidation of Diesel fuel, FAME and mixtures (Diesel / FAME) using PetroOxy device, the oxidation kinetic was determined for the different fuels and characterization of oxidation products was carried out using the (FTIR-ATR, ATG / DTG and GC / MS). The second study was dedicated to the reproduction of deposit on different substrates (aluminum, stainless steel, PEEK, aluminum coating on gold, silcoklean coating on stainless steel) using the Micro Coking device, and characterization of the deposit obtained in each case using (FTIR-ATR, ATG / DTG, XPS and FEG). The results of this work permit to determine the impact of FAME nature and FAME concentration on fuel oxidation stability; an hypothesis was proposed to explain deposit formation
APA, Harvard, Vancouver, ISO, and other styles
11

McWilliams, Kevin Michael. "Coordination of internal olefins, specifically fatty acid methyl esters (FAMEs), by transition metals." [Ames, Iowa : Iowa State University], 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

De, Castro Ana Maria. "Fatty acid methyl ester analysis of microbial communities in biofilters inoculated with different sources." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ28820.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bollin, Patrick M. "The Production of Fatty Acid Methyl Esters in Lewis Acidic Ionic Liquids." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1321507054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kadisch, Marvin [Verfasser]. "Stabilizing whole-cell biocatalysts : En route to more efficient fatty acid methyl ester bioprocessing / Marvin Kadisch." Aachen : Shaker, 2017. http://d-nb.info/1149269103/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Banerjee, Sagarika. "EFFECTS OF LIVESTOCK ANTIBIOTICS ON NITRIFICATION, DENITRIFICATION, AND MICROBIAL COMMUNITY COMPOSITON IN SOILS ALONG A TOPOGRAPHIC GRADIENT." UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_theses/43.

Full text
Abstract:
Several types of antibiotics (roxarsone, virginiamycin, and bacitracin) are widely included in poultry feed to improve animal growth yields. Most of the antibiotics are excreted in manure which is subsequently applied to soils. One concern with this practice is that antibiotics may affect several microbially-mediated nutrient cycling reactions in soils that influence crop productivity and water quality. The main objectives of this study were to determine the effects of livestock antibiotics on nitrification, denitrification, and microbial community composition in soils along a topographic gradient. These objectives were addressed in a series of lab experiments by monitoring changes in inorganic N species and ester-linked fatty acid methyl ester profiles after exposing soil microorganisms collected from different topographic positions to increasing levels of antibiotics. It was discovered that roxarsone and virginiamycin inhibited nitrification and soil microbial growth and also influenced microbial community composition, but only at levels that were much higher than expected in poultry litter-applied soils. Bacitracin did not affect nitrification, microbial growth, or microbial community composition at any concentration tested. None of the antibiotics had a strong affect on denitrification. Thus, it is unlikely that soil, water, or air quality would be significantly impacted by the antibiotics contained in poultry litter.
APA, Harvard, Vancouver, ISO, and other styles
16

Testud, Blandine. "Les huiles végétales comme plateforme pour la conception de nouveaux polyesters hyper-ramifiés." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0365/document.

Full text
Abstract:
Ces travaux de thèse traitent de la valorisation des huiles végétales comme plateforme pour la synthèse de polyesters d’architecture hyper-ramifiée. Pour ce faire, l’approche par polycondensation de monomères de type ABn (n ≥ 2) a été privilégiée. Des précurseurs plurifonctionnels portant des fonctions ester (A) et alcool (B) ont ainsi été préparés par modification chimique d’huiles végétales et/ou d’esters méthyliques d’acide gras. Plusieurs méthodologies de synthèse simple, sûres et efficaces ont été mises en place afin de garantir une réalité industrielle à ce projet. Deux plateformes de monomères de type ABn ont été obtenues par (1) hydrolyse acide d’huiles végétales époxydées et (2) en faisant appel à des réactions d’addition de thiol-ène et de métathèse. Le développement de procédés de polycondensation en masse, a alors permis l’accès à de nouveaux polyesters hyper-ramifiés. La densité de ramifications ainsi que les propriétés thermo-mécaniques de ces matériaux ont été modulées par le choix adapté de la structure chimique des précurseurs ‘gras’ utilisés. Enfin, un travail exploratoire a été conduit concernant la post-fonctionnalisation du coeur comme de la périphérie de ces polyesters hyper-ramifiés dans le but de moduler leurs propriétés et ainsi d’étendre la portée de leurs applications, des plastiques de commodité aux matériaux avancés
The aim of this thesis was to use vegetable oils as a platform for the design of more sustainable polyesters of hyperbranched architecture. For that purpose, the approach by polycondensation of ABn-type monomers (n ≥ 2) was favored. Plant oils and/or fatty acid methyl esters were chemically modified to synthesize multifunctional precursors featuring ester (A) and alcohol moieties (B). Simple, safe and efficient chemical transformations were considered to provide industrial perspectives to this work. Two main platforms of ABn-type monomers were developed by (1) acid hydrolysis of epoxidized vegetables oils and (2) thiol-ene/metathesis coupling reactions. The subsequent polycondensation of these oily-derived monomers, performed in bulk, gave access to novel renewable hyperbranched polyesters. The branching density as well as the thermo-mechanical properties of these materials were adjusted by designing and selecting the chemical structure of the fatty acid-based monomers. Finally, an exploratory work was carried out regarding the post-functionalization of both the core and the periphery of these hyperbranched polyesters with the aim at tuning their properties and thus opening the scope of their applications, from commodity plastics to advanced materials
APA, Harvard, Vancouver, ISO, and other styles
17

Lancaster, Sarah Renee. "Soil microbial response to glyphosate-base cotton pest management systems." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Saleh, Jehad. "A Membrane Separation Process for Biodiesel Purification." Thesis, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/19730.

Full text
Abstract:
In the production of biodiesel via the transesterification of vegetable oils, purification to international standards is challenging. A key measure of biodiesel quality is the level of free glycerol in the biodiesel. In order to remove glycerol from fatty acid methyl ester (FAME or biodiesel), a membrane separation setup was tested. The main objective of this thesis was to develop a membrane process for the separation of free glycerol dispersed in FAME after completion of the transesterification reaction and to investigate the effect of different factors on glycerol removal. These factors included membrane pore size, pressure, temperature, and methanol, soap and water content. First, a study of the effect of different materials present in the transesterification reaction, such as water, soap, and methanol, on the final free glycerol separation was performed using a modified polyacrylonitrile (PAN) membrane, with 100 kD (ultrafiltration) molecular weight cut off for all runs at 25°C. Results showed low concentrations of water had a considerable effect in removing glycerol from the FAME. The mechanism of separation of free glycerol from FAME was due to the removal of an ultrafine dispersed glycerol-rich phase present in the untreated (or raw) FAME. The size of the droplets and the free glycerol separation both increased with increasing water content of the FAME. Next, three types of polymeric membranes in the ultrafiltration range with different molecular weight cut off, were tested at three fixed operating pressures and three operating temperatures (0, 5 and 25oC) to remove the free glycerol from a biodiesel reactor effluent. The ASTM standard for free glycerol concentration was met for the experiments performed at 25°C. The results of this study indicate that glycerol could be separated from raw FAME to meet ASTM and EN standards at methanol feed concentrations of up to 3 mass%. The process was demonstrated to rely on the formation of a dynamic polar layer on the membrane surface. Ceramic membranes of different pore sizes (0.05 µm (ultrafiltration (UF) range) and 0.2 µm (microfiltration (MF) range)) were used to treat raw FAME directly using the membrane separation set up at temperatures of 0, 5 and 25°C. The results were encouraging for the 0.05 µm pore size membrane at the highest temperature (25°C). The effect of temperature on glycerol removal was evident from its relation with the concentration factor (CF). Higher temperatures promoted the achievement of the appropriate CF value sooner for faster separation. Membrane pore size was also found to affect separation performance. A subsequent study revealed the effect of different variables on the size of the glycerol droplets using dynamic light scattering (DLS). A key parameter in the use of membrane separation technology is the size of the glycerol droplets and the influence of other components such as water, methanol and soaps on that droplet size. The effect of water, methanol, soap and glycerol on the size of suspended glycerol droplets in FAME was studied using a 3-level Box-Behnken experimental design technique. Standard statistical analysis techniques revealed the significant effect of water and glycerol on increasing droplet size while methanol and soap served to reduce the droplet size. Finally, a study on the effect of trans-membrane pressure (TMP) at different water concentrations in the FAME phase on glycerol removal using UF (0.03 µm pore size, polyethersulfone (PES)) and MF (0.1 and 0.22 µm pore sizes, PES) membranes at 25, 40 and 60°C was performed. Results showed that running at 25°C for the two membrane types produced the best results for glycerol removal and exceeded the ASTM and EN standards. An enhancement of glycerol removal was found by adding small amounts of water up to the maximum solubility limit in biodiesel. An increase in temperature resulted in an increase in the solubility of water in the FAME and less effective glycerol removal. Application of cake filtration theory and a gel layer model showed that the gel layer on the membrane surface is not compressible and the specific cake resistance and gel layer concentration decrease with increasing temperature. An approximate value for the limiting (steady-state) flux was reported and it was found that the highest fluxes were obtained at the lowest initial water concentrations at fixed temperatures. In conclusion, dispersed glycerol can be successfully removed from raw FAME (untreated FAME) using a membrane separation system to meet the ASTM biodiesel fuel standards. The addition of water close to the solubility limit to the FAME mixture enables the formation of larger glycerol droplets and makes the separation of these droplets straightforward.
APA, Harvard, Vancouver, ISO, and other styles
19

Nguyen, van Cuong. "Maîtrise de l'aptitude technologique des oléagineux par modification structurelle : applications aux opérations d'extraction et de transestérification in-situ." Thesis, La Rochelle, 2010. http://www.theses.fr/2010LAROS308/document.

Full text
Abstract:
Le présent travail de thèse porte sur l’étude de l’impact de la texturation par DIC (Détente Instantanée Contrôlée) sur les deux opérations d’extraction d’huile et de transestérification in-situ appliquées aux graines de colza et fèves de Jatropha Curcas. Une analyse fondamentale a prouvé l’importance de la diffusion du solvant ou réactif dans la matrice solide, et permis d’identifier les processus d’intensification au travers des trois caractéristiques physiques de diffusivité effective, d’accessibilité initiale et de rendement d’extraction ; ainsi que la cinétique de transestérification in-situ et le rendement d’ester méthylique d’acides gras. Une étude phénoménologique a permis de déterminer les diverses valeurs de ces caractéristiques en fonction des paramètres opératoires DIC (pression de vapeur d’eau saturée P et temps de traitement t).Dans le cas d’extraction, la diffusivité effective (Deff) de produits traités par DIC peut atteindre 8,01 10-12 m2/s contre 0,715 10-12 m2/s pour le colza non traité et 5,90 10-12 m2/s contre 2,42 10-12 m2/s pour le jatropha non traité. Le taux d’accessibilité initiale de produits traités par DIC peut atteindre 80,53% contre 26,71% pour le colza non traité et 92,58% contre 75,91% pour le jatropha non traité. Au plan du rendement, la DIC a pu impliquer un rendement de 153% pour le colza et 112% pour le jatropha.Dans le cas de la transestérification in-situ, les rendements d’esters méthyliques d’acides gras totaux (FAME total) obtenus pour les produits traités par DIC sont systématiquement supérieurs à ceux de la matière première non traitée par DIC pour les deux cas de colza et de jatropha. Le temps de réaction a été réduit à 30 - 45 minutes contre 120 minutes pour le produit non traité par DIC (cas de colza) et à 15 minutes au lieu de 60 minutes pour le produit non traité par DIC (cas de fèves de jatropha)
The present work has concerned the impact of Instant - Controlled Pressure Drop (DIC) texturing on both operations of oil extraction and in-situ transesterification, carried out with the rapeseed and the kernels of Jatropha Curcas. A fundamental analysis proved the importance of the reactive or solvent diffusion within the solid matrix. By texturing the natural product, the whole operation can be intensified. The process is revealed through three characteristics, which are the effective diffusivity, the starting accessibility, and the yields of extraction. Also, the kinetics and yield of fatty acid methyl ester of in-situ transesterification are discovered. A phenomenological study allowed determining the value of these characteristics versus DIC operating parameters (saturated steam pressure P and treatment time t).A 2 h solvent extraction of DIC treated material allowed the total oil yields to be improved by 153% for colza and 112% for jatropha, the effective diffusivity (Deff) can reach up to 8.014*10-12 m2/s as against 0.715*10-12 m2/s for colza untreated by DIC, and up to 5.90*10-12 m2/s as against 2.42*10-12 m2/s for the untreated jatropha. The rate of initial accessibility of products treated by DIC can reach up to 80.53% as against 26.71% for untreated colza and can reach up to 92.58% as against 75.91% for the product untreated jatropha. In the case of in situ transesterification, the total yield of fatty acid methyl esters (FAME total) obtained from the DIC treated products is systematically higher than that of untreated colza and jatropha raw material. The reaction time was decreased to 30 - 45 min instead of 120 min in the case of colza, and to 15 min instead of 60 min in the case of jatropha kernel
APA, Harvard, Vancouver, ISO, and other styles
20

Kelley, James Edward. "LIPID PRODUCTION BY MICROALGAE TREATING MUNICIPAL WASTEWATER." DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/1123.

Full text
Abstract:
Microalgae hold much promise as a feedstock in liquid biofuel production. Lipid content of microalgae cells range from 30-80% dry weight of biomass. It is projected that microalgae can produce between 1,000-6,500 gallons/acre/year of oil. Currently, production of industrial algae operates in open raceway ponds that use minimal capital and energy inputs to culture algae. Raceway ponds can also be used to grow microalgae from municipal waste streams. Although high biomass productivity can be achieved in these systems, there remains a large production gap between large volumes of biomass cultivation and high lipid content from microalgae cells. Low lipid content has been ameliorated through laboratory manipulations of nitrogen availability and light intensity. This two-part project measured microalgae lipid levels in open raceway ponds located at the San Luis Obispo Water Reclamation Facility (SLO WRF) grown in primary clarifier effluent and then performed nitrogen depletion and light-shift methods on cultures to increase triglyceride (TAG) content. The raceway ponds reached maximum biomass productivity of 24 g/m2-day, but with minimal TAG reserves. Optimization of both biomass productivity and TAG content can be achieved in April and September with 13 g/m2-day productivity and 13% TAG content. Investigation of increased TAG production responses were performed on wastewater microalgae (predominately Scenedesmus sp.) through N-depletion and three light treatments: light-shift on day 3 (before N-depletion), light-shift on day 5 (near N-depletion), and a double-illumination treatment. Highest levels of TAG content were observed in the double-illumination treatment and reached a maximum of 49% TAG in 9 days.
APA, Harvard, Vancouver, ISO, and other styles
21

Falahati, Hamid. "The Characterization of Bimodal Droplet Size Distributions in the Ultrafiltration of Highly Concentrated Emulsions Applied to the Production of Biodiesel." Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/19585.

Full text
Abstract:
A non-reactive model system comprising a highly concentrated and unstable oil-in-water emulsion was used to investigate the retention of oil by the membrane in producing biodiesel with a membrane reactor. Critical flux was identified using the relationship between the permeate flux and transmembrane pressure along with the separation efficiency of the membrane. It was shown that separation efficiencies above 99.5% could be obtained at all operating conditions up to the critical flux. It was observed that the concentration of oil in all collected permeate samples using the oil-water system was below 0.2 wt% when operating at a flux below the critical flux. Studies to date have been limited to the characterization of low concentrated emulsions below 15 vol.%. The average oil droplet size in highly concentrated emulsions was measured as 3200 nm employing direct light scattering (DLS) measurement methods. It was observed that the estimated cake layer thickness of 20 to 80 mm was larger than external diameter of the membrane tube i.e. 6 mm based on a large particle size. Settling of the concentrated emulsion permitted the detection of a smaller particle size distribution (30-100 nm) within the larger particles averaging 3200 nm. It was identified that DLS methods could not efficiently give the droplet size distribution of the oil in the emulsion since large particles interfered with the detection of smaller particles. The content of the smaller particles represented 1% of the total weight of oil at 30°C and 5% at 70°C. This was too low to be detected using DLS measurements but was sufficient to affect ultrafiltration. In order to study the critical flux in the presence of transesterification reaction and the effect of cross flow velocity on separation, various oils were transesterified in another membrane reactor providing higher cross flow velocity. higher cross flow velocity provides better separation by reducing materials deposition on the surface of the membrane due to higher shearing. The oils tested were canola, corn, sunflower and unrefined soy oils (Free Fatty Acids (FFA< 1%)), and waste cooking oil (FFA= 9%). The quality of all biodiesel samples was studied in terms of glycerine, mono-glyceride, di-glyceride and tri-glyceride concentrations. The composition of all biodiesel samples were in the range required by ASTM D6751 and EN 14214 standards. A critical flux based on operating pressure in the reactor was reached for waste cooking and pre-treated corn oils. It was identified that the reaction residence time in the reactor was an extremely important design parameter affecting the operating pressure in the reactor.
Natural Sciences and Engineering Research Council of Canada (NSERC)
APA, Harvard, Vancouver, ISO, and other styles
22

Cai, Xiaoshuang. "Production of carbonated vegetable oils from a kinetic modeling to a structure-reactivity approach Structure-reactivity : comparison between the carbonation of epoxidized vegetable oils and the corresponding epoxidized fatty acid methyl ester Aminolysis of cyclic-carbonate vegetable oils as a non-isocyanate route for the synthesis of polyurethane: a kinetic and thermal study Influence of ring‐opening reactions on the kinetics of cottonseed oil epoxidation Investigation of the physicochemical properties for vegetable oils and their epoxidized and carbonated derivatives Influence of gas-liquid mass transfer on kinetic modeling : carbonation of epoxidized vegetable oils." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMIR05.

Full text
Abstract:
La valorisation de la biomasse et du dioxyde de carbone est à présent considérée comme une solution aux problèmes environnementaux du réchauffement climatique et l'épuisement des réserves de pétrole. Ainsi, les huiles végétales ont attiré l'attention croissante des milieux universitaires et industriels, comme une source de biomasse potentielle renouvelable qui peut être appliquée à la production de substitut fossile pour un développement durable, due à leurs caractères renouvelables, durables, biodégradables. De plus, cette biomasse est disponible avec une énorme quantité. Durant des décennies de recherches, les processus d'époxydation et de carbonatation sont deux méthodes d'application populaires pour la valorisation des huiles végétales. La conversion des huiles végétales en huiles époxydées est définie par une conversion d'un composé insaturé en un groupe époxyde. Jusqu'ici, l'oxydation de Prileschajew est la méthode de synthèse plus efficace pour la possible industrialisation du processus d'époxydation de huiles végétales, qui est une manière conventionnelle bien connue à utiliser comme processus de production commerciale. Ce type d'époxydation utilise l'acide percarboxylique comme transporteur d'oxygène qui est formé in situ dans la phase aqueuse, et ensuite époxyde les groupes insaturés des huiles végétales en groupes époxyde. Cependant, cette méthode présente une réaction secondaire d'ouverture du cycle du groupe époxyde au cours du processus. Donc, les conditions du procédé d'époxydation doivent être optimisées afin de minimiser les réactions d'ouverture de cycle. Des paramètres de réaction, y compris la concentration en catalyseur acide (acide sulfurique), réactifs (eau, groupe époxyde, peroxyde d'hydrogène, acide acétique) et la température de réaction, ont été discutés dans cette étude pour l'époxydation et réaction d'ouverture de cycle des huiles végétales. Au cours de la modélisation cinétique, les constantes cinétiques associées pour les réactions d'ouverture du cycle ont été estimées. En se basant sur ce modèle, les réactions d'ouverture du cycle époxyde par les acides acétique et peracétique sont plus rapides que celles de l'eau et du peroxyde d'hydrogène. Un réacteur en mode semi-fermé, avec addition du peroxyde d'hydrogène et de l'acide sulfurique, est la configuration la plus appropriée pour la production d'huiles végétales époxydées. Pour déterminer les conditions optimales et passer à échelle industrielle dans les procédés d'époxydation et de la carbonation, il faut connaître différentes propriétés physicochimiques telles que la viscosité, la densité, l'indice de réfraction, la capacité thermique spécifique et les évolutions de ces données avec la température. Cependant, aucune information sur ces propriétés est disponible dans la littérature. Pour cette étude, l'évolution de ces propriétés ont été déterminées pour trois huiles végétales et leurs dérivés époxydées et carbonates (l'huile de coton, l'huile de lin et l'huile de soja) avec la température et leur composition. La densité et l'indice de réfraction ont été trouvé linéairement dépendant de la température pour les huiles étudiées. La relation entre la contrainte de cisaillement et le taux de cisaillement dans l’étude de viscosité, indique que ces huiles sont des fluides newtoniens. Il a été démontré que la capacité thermique spécifique suit une équation polynomiale du second ordre avec la température. Sur la base de ces résultats, il a été démontré que certaines corrélations pourraient être utilisées pour prédire les évolutions de ces propriétés physicochimiques à différentes compositions et températures
Nowadays, biomass and carbon dioxide valorization are considered as a helpful solution to the environmental issues of global warming and the depletion of petroleum reserves. Thus, vegetable oils have attracted increasing attention of academic and industrial communities, as one of the potential renewable biomass that can be applied to the production of fossil substitute for sustainable development, owning to their advantages of renewable, sustainable, biodegradable, and universally available with huge feedstock. Among decades of researches, epoxidation and carbonation processes are two popular application methods for vegetable oil valorization. The conversion of vegetable oils into epoxidized ones is defined by a conversion of unsaturated compound into an epoxide group. So far, the potential application for the production of epoxidized oil in the industrial is the Prileschajew oxidation, which is a wellknown conventional way to be used as the commercial production process. This type of epoxidation uses percarboxylic acid as an oxygen carrier, which is formed in situ in the aqueous phase, and then epoxidize the unsaturated groups on the vegetable oils into epoxide groups. During the process, however, this method presents side reaction of ring-opening of the epoxide group. Therefore, the selective epoxidation process conditions need to be optimized in order to minimize the ring-opening reactions. In this study, process parameters including the concentration of acid catalyst (sulfuric acid), reactants (water, epoxide group, hydrogen peroxide, acetic acid) and the reaction temperature have been discussed for the epoxidation and ring opening of vegetable oils. During the kinetic modeling stage, the related kinetic constants for the ring opening reactions were estimated. Based on this model, the ring opening by acetic and peracetic acids was found to be faster than by water and hydrogen peroxide. A semibatch reactor, where hydrogen peroxide and sulfuric acid were added, was found to be the most suitable configuration. To determine the optimum operating conditions and scale up the epoxidation or carbonation processes, it requires the database of different physicochemical properties, i.e. viscosity, density, refractive index, or specific heat capacity and the evolutions of these properties with the temperature. However, this information is absent in the literature. For this study, the evolution of these properties with temperature and compositions (double bond, epoxide and carbonated groups concentration) was determined for three vegetable oils and their corresponding epoxidized and carbonated forms (cottonseed oil, linseed oil and soybean oil). Density and refractive indices of these oils were found to vary linearly with temperature. Based on the measurement of changes in viscous stresses with shear rates, these oils were found to be Newtonian fluids. It was demonstrated that specific heat capacity follows a polynomial equation of second order with temperature. Based on these results, it was demonstrated that some correlations could be used to predict the evolutions of these physicochemical properties at different composition and temperature based on the knowledge of the property of the pure compounds
APA, Harvard, Vancouver, ISO, and other styles
23

Chen, Jhih-Hong, and 陳志宏. "Effect of fatty acid methyl ester compositions of various biodiesel blends on fuel properties." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/t2jp32.

Full text
Abstract:
碩士
國立臺北科技大學
化學工程研究所
98
The objective of this study is to blend four biodiesels including tung oil, oleic acid, palm oil, and jatropha oil methyl esterd. The fatty acid methyl esters (biodiesel) were obtained from the transesterification of animal fats and vegetable oils. Some properties of biodiesel like cold filter plugging point (CFPP), kinematic viscosity (KV), and induction period for oxidation stability (IP), etc. can not satisfy the biodiesel specification standards (ex. CNS 15072 in Taiwan), especially in the poor low-temperature properties and oxidation stability. One main cause accounting for the different properties of biodiesel comes from the different fatty acid methyl ester compositions. Therefore, this study studied the properties of biodiesel blends which were chosen from the biodiesels synthesized from various vegetable oils, including canola oil, coconut oil, jatropha oil, oleic acid, palm oil, palm kernel oil, soapnut oil, soybean oil, sunflower oil, and tung oil. The corresponding biodiesels were denoted as CME, COME, JME, OME, PME, PKME, SOME, SME, SUME, and TME, respectively. Furthermore, the properties of biodiesels such as acid value (AV), CFPP, density, iodine value (IV), KV, and IP were analyzed. Then three biodiesels showing the complementary properties are chosen to be blended in different weight ratio for the satisfaction of the biodiesel specification standards. Six blend combination were tested in this study. The optimum blending ratios are: The 1st group is 60 wt.% CME, 20 wt.% PME, and 20 wt.% TME (analytic items: CFPP, density, IV, and KV). The 2nd group is 20 wt.% COME, 20 wt.% PKME, and 60 wt.% TME (analytic items: density, IV, KV, and IP). The 3rd group is 70 wt.% OME, 30 wt.% PME, and 0 wt.% SME (analytic items: CFPP, IV, and IP). The 4th group is 60 wt.% OME, 20 wt.% PME, and 20 wt.% TME (analytic items: CFPP, density, IV, KV, and IP). The 5th group is 100 wt.% JME, 0 wt.% PME, and 0 wt.% SME (analytic items: CFPP, IV, and IP). The 6th group is 70 wt.% JME, 30 wt.% SOME, and 0 wt.% SUME (analytic items: CFPP, IV, and IP). In addition, the multiple linear regression equations were used to investigate the effects of the fatty acid compositions of biodiesel blends on the fuel properties.
APA, Harvard, Vancouver, ISO, and other styles
24

Luo, Wan-jhen, and 羅琬真. "Liquid-Liquid Equilibrium for Ternary Mixtures Containing Water, Methanol, Fatty Acid Methyl Ester, Glycerol or Sulfolane." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/50578695612413004815.

Full text
Abstract:
碩士
國立臺灣科技大學
化學工程系
96
The objective of this work is to measure the liquid-liquid equilibrium (LLE) data of specific ternary systems for process design purposes. The LLE data of seven ternary systems, including water + methanol + methyl oleate, water + methanol + methyl linoleate, glycerol + methanol + methyl oleate, glycerol + methanol + methyl linoleate, nonane + benzene + sulfolane, nonane + toluene + sulfolane and nonane + m-xylene + sulfolane were measured at temperatures ranging from 298.15 K to 318.15 K. In general, two-phase region became smaller as increase of temperature, but this effect is not significant.The NRTL model and the UNIQUAC model were used to correlate the phase equilibrium data. The UNIQUAC model was found to be better than the NRTL model. This study also used various vesions of the UNIFAC model to predict the LLE properties. Good predictions were obtained for nonane+(benzene or toluene or m-xylene)+sulfolane systems. Unfortanately, the results for other systems are unsatisfactory.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography