Academic literature on the topic 'Faults (Geology) Thrust faults (Geology)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Faults (Geology) Thrust faults (Geology).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Faults (Geology) Thrust faults (Geology)"

1

BURBERRY, C. M., and J. M. PALU. "The influence of the Great Falls Tectonic Zone on the thrust sheet geometry of the southern Sawtooth Range, Montana, USA." Geological Magazine 153, no. 5-6 (June 3, 2016): 845–65. http://dx.doi.org/10.1017/s0016756816000431.

Full text
Abstract:
AbstractThe reactivation potential of pre-existing deep-seated structures influences deformation structures produced in subsequent compression. This contribution investigates thrust geometries produced in surface thrust sheets of the Sawtooth Range, Montana, USA, deforming over a previously faulted sedimentary section. Surface thrust fault patterns were picked using existing maps and remote sensing. Thrust location and regional transport direction was also verified in the field. These observations were used to design a series of analogue models, involving deformation of a brittle cover sequence over a lower section with varying numbers of vertical faults. A final model tested the effect of decoupling the upper cover and lower section with a ductile detachment, in a scenario closer to that of the Sawtooth Range. Results demonstrate that complexity in surface thrust sheets can be related to heterogeneity within the lower sedimentary section, even when there is a detachment between this section and the rest of the cover. This complexity is best observed in the map view, as the models do not show the deep-seated faults propagating into the cover. These results were then used to predict specific locations of discrete basement fault strands in the study area, associated with what is generally mapped as the Scapegoat-Bannatyne Trend. The deep-seated faults are more likely to be reactivated as strike-slip features in nature, given the small obliquity between the ENE-directed compression direction and the NE-oriented basement faults. More generally, these results can be used to govern evaluation of thrust belts deforming over faulted basement, and to predict the locations of specific fault strands in a region where this information is unknown.
APA, Harvard, Vancouver, ISO, and other styles
2

Cape, C. D., R. M. O'Connor, J. M. Ravens, and D. J. Woodward. "Seismic expression of shallow structures in active tectonic settings in New Zealand." Exploration Geophysics 20, no. 2 (1989): 287. http://dx.doi.org/10.1071/eg989287.

Full text
Abstract:
Late Cenozoic deformation along the Australian/Pacific plate boundary is seen in onshore New Zealand as zones characterised by extension- or transcurrent- or contraction-related structures. High-resolution multichannel seismic reflection data were acquired in several of these tectonic zones and successfully reveal the shallow structures within them. Thirty kilometres of dynamite reflection data in the Rangitaiki Plains, eastern Bay of Plenty, define a series of NE-trending normal faults within this extensional back-arc volcanic region. The data cross surface ruptures activated during the 1987 Edgecumbe earthquake. In the southern North Island, a 20 km Mini-Sosie? seismic profile details the Quaternary sedimentation history and reveals the structure of the active strike-slip and thrust fault systems that form the western and eastern edges of the Wairarapa basin, respectively. This basin is considered to sit astride the boundary between a zone of distributed strike-slip faults and an active accretionary prism. In the Nelson area, northwestern South Island, previously unrecognised low-angle thrust faults of Neogene or Quaternary age are seen from Mini-Sosie data to occur at very shallow depths. Crustal shortening here was previously thought to arise from movement on high-angle reverse faults, and the identification of these low-angle faults has prompted a reassessment of that model. A grid of 18 km of Mini-Sosie seismic data from the central eastern South Island delineates Neogene or Quaternary thrust faults in Cenozoic sediments. The thrusts are interpreted as reactivated Early Eocene normal faults, and the thrust fault geometry is dominated by these older structures.
APA, Harvard, Vancouver, ISO, and other styles
3

Cheng, Feng, Andrew V. Zuza, Peter J. Haproff, Chen Wu, Christina Neudorf, Hong Chang, Xiangzhong Li, and Bing Li. "Accommodation of India–Asia convergence via strike-slip faulting and block rotation in the Qilian Shan fold–thrust belt, northern margin of the Tibetan Plateau." Journal of the Geological Society 178, no. 3 (January 29, 2021): jgs2020–207. http://dx.doi.org/10.1144/jgs2020-207.

Full text
Abstract:
Existing models of intracontinental deformation have focused on plate-like rigid body motion v. viscous-flow-like distributed deformation. To elucidate how plate convergence is accommodated by intracontinental strike-slip faulting and block rotation within a fold–thrust belt, we examine the Cenozoic structural framework of the central Qilian Shan of northeastern Tibet, where the NW-striking, right-slip Elashan and Riyueshan faults terminate at the WNW-striking, left-slip Haiyuan and Kunlun faults. Field- and satellite-based observations of discrete right-slip fault segments, releasing bends, horsetail termination splays and off-fault normal faulting suggest that the right-slip faults accommodate block rotation and distributed west–east crustal stretching between the Haiyuan and Kunlun faults. Luminescence dating of offset terrace risers along the Riyueshan fault yields a Quaternary slip rate of c. 1.1 mm a−1, which is similar to previous estimates. By integrating our results with regional deformation constraints, we propose that the pattern of Cenozoic deformation in northeastern Tibet is compatible with west–east crustal stretching/lateral displacement, non-rigid off-fault deformation and broad clockwise rotation and bookshelf faulting, which together accommodate NE–SW India–Asia convergence. In this model, the faults represent strain localization that approximates continuum deformation during regional clockwise lithospheric flow against the rigid Eurasian continent.Supplementary material: Luminescence dating procedures and protocols is available at https://doi.org/10.17605/OSF.IO/CR9MNThematic collection: This article is part of the Fold-and-thrust belts and associated basins collection available at: https://www.lyellcollection.org/cc/fold-and-thrust-belts
APA, Harvard, Vancouver, ISO, and other styles
4

Levy, Y., T. K. Rockwell, J. H. Shaw, A. Plesch, N. W. Driscoll, and H. Perea. "Structural modeling of the Western Transverse Ranges: An imbricated thrust ramp architecture." Lithosphere 11, no. 6 (November 4, 2019): 868–83. http://dx.doi.org/10.1130/l1124.1.

Full text
Abstract:
Abstract Active fold-and-thrust belts can potentially accommodate large-magnitude earthquakes, so understanding the structure in such regions has both societal and scientific importance. Recent studies have provided evidence for large earthquakes in the Western Transverse Ranges of California, USA. However, the diverse set of conflicting structural models for this region highlights the lack of understanding of the subsurface geometry of faults. A more robust structural model is required to assess the seismic hazard of the Western Transverse Ranges. Toward this goal, we developed a forward structural model using Trishear in MOVE® to match the first-order structure of the Western Transverse Ranges, as inferred from surface geology, subsurface well control, and seismic stratigraphy. We incorporated the full range of geologic observations, including vertical motions from uplifted fluvial and marine terraces, as constraints on our kinematic forward modeling. Using fault-related folding methods, we predicted the geometry and sense of slip of the major faults at depth, and we used these structures to model the evolution of the Western Transverse Ranges since the late Pliocene. The model predictions are in good agreement with the observed geology. Our results suggest that the Western Transverse Ranges comprises a southward-verging imbricate thrust system, with the dominant faults dipping as a ramp to the north and steepening as they shoal from ∼16°–30° at depth to ∼45°–60° near the surface. We estimate ∼21 km of total shortening since the Pliocene in the eastern part of the region, and a decrease of total shortening west of Santa Barbara down to 7 km near Point Conception. The potential surface area of the inferred deep thrust ramp is up to 6000 km2, which is of sufficient size to host the large earthquakes inferred from paleoseismic studies in this region.
APA, Harvard, Vancouver, ISO, and other styles
5

Minguely, Bruno, Olivier Averbuch, Marie Patin, David Rolin, Franck Hanot, and Francoise Bergerat. "Inversion tectonics at the northern margin of the Paris basin (northern France): new evidence from seismic profiles and boreholes interpolation in the Artois area." Bulletin de la Société Géologique de France 181, no. 5 (September 1, 2010): 429–42. http://dx.doi.org/10.2113/gssgfbull.181.5.429.

Full text
Abstract:
AbstractA synthesis of existing borehole data and seismic profiles has been conducted in the Artois area (northern France), along the northern border of the Paris basin, in order to explore the possible control exerted at depth by the Upper Carboniferous Variscan thrust front on the distribution of Late Paleozoic-Mesozoic depositional centers and their subsequent uplift in Tertiary times. Such control was demonstrated recently in the Weald-Boulonnais basin (Eastern Channel area) that forms the western prolongation of the area under study but was so far poorly constrained in the Artois area. Presented data provide evidence for the topography of the Artois hills and the altitude of sedimentary layers to be controlled by the activity of a network of relaying WNW-ESE striking faults inducing the systematic uplift of the southern fault blocks. Those steeply S-dipping faults branch downward onto the ramp of the Variscan thrusts forming listric faults that locally limit to the north buried half-graben structures, filled with fan-shaped fluviatile Stephanian-Permian deposits. Such clear syn-rift geometry shows that the ramp of the main Variscan frontal thrust (the Midi thrust) has been reactivated as a normal fault in Stephanian-Permian times thus forming a very demonstrative example of a negative inversion process. The reverse offset of the transgressive Middle Cretaceous-Lower Eocene layers covering unconformably the Paleozoic substratum argue for a Tertiary (Middle Eocene-Late Oligocene?) contractional reactivation of the fault network thereby documenting a repeated inversion process along the Artois Variscan thrust front. The Variscan frontal thrust zone is thus shown here to represent a prominent crustal-scale mechanical discontinuity that localized deformation in the Artois-Boulonnais area since Upper Paleozoic times.
APA, Harvard, Vancouver, ISO, and other styles
6

Hervouet, Yves, Jose Tomass Castrillo-Delgado, and Oscar Odreman. "Interaction entre un chevauchement imbrique et une zone transcurrente; le flanc nord-ouest de Andes venezueliennes." Bulletin de la Société Géologique de France 172, no. 2 (March 1, 2001): 159–75. http://dx.doi.org/10.2113/172.2.159.

Full text
Abstract:
Abstract Geological framework; Geological setting: The Venezuela Andes or Merida Andes (fig. 1) extend from the Colombian border in the SW to Barquisimeto in the NE, and constitute a basement uplift exceeding 5,000 m near Merida (Pico Bolivar). This young chain is bordered to the W by the Maracaibo foredeep basin, and to the E by the Barinas-Apure foreland basin. The Bocono fault divides the Andean Belt in two parts along a NE-SW direction. This shows that the uplift of the Andes is contemporaneous with an oblique translation. In the study area, located on the northwestern flank near Maracaibo basin, three major structures are present: in the E, the N-S senestral strike slip Valera-Rio Momboy fault, in the S the E-W dextral strike slip Pinango fault and, in the center, the SW-NE striking Las Virtudes thrust verging toward NW. Lithologic and stratigraphic formations (fig. 4): The Las Virtudes Fault separates two different structural zones. In the SE, overthrust units are made of crystalline basement, Paleozoic substratum and preorogenic sedimentary formations (Cretaceous-Eocene). The foredeep flexural basin, located NW, is filled by synorogenic molasses (Neogene and Quaternary), largely developed within the Betijoque Fm. (Upper Miocene to Pliocene in age) which reaches a thickness of 5000 m. Structure of the northwestern Andean flank; Las Virtudes Fault and its thrust slice zone: Near Las Virtudes village (fig. 5, 6-2), this thrust is systematically associated with a narrow overturned foredeep depobelt (Cretaceous to Neogene in age). These slices are unknown elsewhere in the Andean Chain and represent the terminal faulted part of the thrust drag. However, where this slice zone is missing (central and northeastern part of the study area), the Las Virtudes Fault is not clearly documented: its throw decreases rapidly and it is possible that the fault disappears northeastward. Andean unit: Near the main strike slip faults, NE trending SE verging reverse faults develop (fig. 6-5). In central and northeastern parts, the throw of the reverse faults increases toward the Valera Fault. It seems that reverse faults are horsetail of this major strike slip fault (fig. 5). Internal part of the northwestern Andean foredeep basin: The foredeep sedimentary formations generally dip toward the NW. Associated to the lack of some formations, tilted anticlines toward the SE are observed (fig. 6-3 and 6-7), and indicate the vicinity of decollement levels in the foredeep, located in Luna-Colon, Pauji and Betijoque Fm.. Seismic profiles show (fig. 7) that the major decollement level of the foredeep is located in La Luna and Colon Fms. [Audemard, 1991; De Toni and Kellogg, 1993; Colletta et al., 1997]. Crustal architecture and timing of the deformation: Several stages can be distinguished in the building of the Andes. Development of an intracutaneous thrust wedge: The first effects of the Andean phase during Miocene are the development of an intracutaneous thrust wedge [Price, 1986]. The lower flat is located in the basement and the upper one in Cretaceous formations. The transport direction is NW. The foredeep develops on the forelimb of this structure and collects detrital products coming from erosion of the first (oldest) reliefs. Decollements in the foredeep basin could be contemporaneous with this major overthrust. Their origin could be due to radius of curvature differences within the thick sedimentary formations (fig. 8). Las Virtudes Fault and backthrusting: Las Virtudes Fault is one of the last events of this part of the Andean Belt. During Plio-Pleistocene, the continental crust breaks with a dip of 35 degrees SE. The Andean unit overthrusts the foredeep basin. Some of the foredeep decollements could still be active and form, together with Andean basement, a triangle zone. Las Virtudes Fault throw reaches 5 km between Las Virtudes and Monte Carmelo villages (fig. 8A). It decreases southwestwards and the back thrusts are probably younger. Northeastwards the throw decreases and eventually disappears (fig. 8B). In the same time the back thrust throws increase. Both seem to be contemporaneous. Conclusions: This structural model explains the basement occurrence in front of the Las Virtudes Fault on seismic profiles and allows to restore correctly the different northwestern flank structures of the Venezuela Andes. These structures can be explained by the conjugate movements of a NW verging intracutaneous thrust wedge and strike slip faults which create a SE verging triangular area (fig. 5). The Andean overthrust is transferred in the Falcon zone along the Valera fault. In the northeastern part of the Maracaibo block, the Valera and Bocono strike slip faults limit the Trujillo block (fig. 10) which moves towards the North during Neogene and Quaternary times.
APA, Harvard, Vancouver, ISO, and other styles
7

Yaseen, Muhammad, Muhammad Shahab, Zeeshan Ahmad, Rehman Khan, Syed Farhan Ali Shah, and Abbas Ali Naseem. "Insights into the structure and surface geology of balanced and retrodeformed geological cross sections from the Nizampur basin, Khyber Pakhtunkhwa, Pakistan." Journal of Petroleum Exploration and Production Technology 11, no. 6 (May 9, 2021): 2561–71. http://dx.doi.org/10.1007/s13202-021-01180-8.

Full text
Abstract:
AbstractThe current research work is an attempt to apply the basic geological procedures, methods of geological mapping, surface and subsurface interpretation and restoration of balanced and retrodeformed cross sections from the Nizampur basin, Khyber Pakhtunkhwa, Pakistan. The work also includes the documentation of several surface structural features, i.e., anticlines, synclines and different types of folds and faults exposed in the vicinity of study area. Four central thrust faults were recognized named as Kahi Thrusts along the cross sections. These thrust faults carried the older sequences of rocks over the younger sequences in different portion along the measured cross section. The folded and faulted rocks in the area show that stratigraphic framework comprises of Eocene, Paleocene, Cretaceous and Jurassic succession of rocks. There are Eocene rocks existing in the extreme South of the mapped area with addition of older Cretaceous and Jurassic succession and contains simple and large-scale folds, faults and back thrust. Two structural transect were mapped which encounter different folds and faults, i.e., X-sections AB oriented NS and CD oriented NE-SW. Restoration of the structural transects was calculated and assumed that at the formation of Main Boundary Thrust, the study area was exposed to the tectonic forces which prognosticated 19.5% shortening in rock sequences from Jurassic to Eocene succession along the measured cross section A_B.
APA, Harvard, Vancouver, ISO, and other styles
8

Fagereng, Å., H. M. Savage, J. K. Morgan, M. Wang, F. Meneghini, P. M. Barnes, R. Bell, et al. "Mixed deformation styles observed on a shallow subduction thrust, Hikurangi margin, New Zealand." Geology 47, no. 9 (July 16, 2019): 872–76. http://dx.doi.org/10.1130/g46367.1.

Full text
Abstract:
Abstract Geophysical observations show spatial and temporal variations in fault slip style on shallow subduction thrust faults, but geological signatures and underlying deformation processes remain poorly understood. International Ocean Discovery Program (IODP) Expeditions 372 and 375 investigated New Zealand’s Hikurangi margin in a region that has experienced both tsunami earthquakes and repeated slow-slip events. We report direct observations from cores that sampled the active Pāpaku splay fault at 304 m below the seafloor. This fault roots into the plate interface and comprises an 18-m-thick main fault underlain by ∼30 m of less intensely deformed footwall and an ∼10-m-thick subsidiary fault above undeformed footwall. Fault zone structures include breccias, folds, and asymmetric clasts within transposed and/or dismembered, relatively homogeneous, silty hemipelagic sediments. The data demonstrate that the fault has experienced both ductile and brittle deformation. This structural variation indicates that a range of local slip speeds can occur along shallow faults, and they are controlled by temporal, potentially far-field, changes in strain rate or effective stress.
APA, Harvard, Vancouver, ISO, and other styles
9

Koukouvelas, I., G. Pe-Piper, and D. J. W. Piper. "Pluton emplacement by wall-rock thrusting, hanging-wall translation and extensional collapse: latest Devonian plutons of the Cobequid fault zone, Nova Scotia, Canada." Geological Magazine 133, no. 3 (May 1996): 285–98. http://dx.doi.org/10.1017/s001675680000902x.

Full text
Abstract:
AbstractLatest Devonian A-type granite-gabbro plutons, in part ductilely deformed, are spatially associated with the strike-slip Cobequid fault zone. The youngest intrusions are close to the Cobequid fault zone, which was the main conduit for magma. Two phases of deformation accompanying magma emplacement are recognized. Early magmas intruded ductile rocks during left-lateral oblique thrust movements. A second stage of right-lateral oblique slip normal faulting accommodated uplift of the plutons when coarse granite was emplaced in the crestal regions. Cross-cutting late stage porphyries, granitic clasts in marginal basins cut by granitic dykes, and superposition of brittle on ductile structures all indicate rapid uplift of the plutons. The geometry of the Cobequid fault zone shows that pluton emplacement was not the result of extension in releasing bends during transcurrent shear. Rather, flower-structure high-angle faults acted as magma conduits and space was created by two processes: translation of wall rocks along thrust faults at depth, developing space away from the master fault zone and backward collapse of the uplifted magma chamber creating space towards the fault zone.
APA, Harvard, Vancouver, ISO, and other styles
10

Reicherter, K. R., and S. Reiss. "The Carboneras Fault Zone (southeastern Spain) revisited with Ground Penetrating Radar – Quaternary structural styles from high-resolution images." Netherlands Journal of Geosciences 80, no. 3-4 (December 2001): 129–38. http://dx.doi.org/10.1017/s0016774600023799.

Full text
Abstract:
AbstractThe Carboneras Fault Zone (CFZ) represents an active set of sinistral strike-slip faults in the Betic Cordilleras of southeastern Spain. It constitutes a major segment of the ‘Trans-Alboran shear zone’ during the Cenozoic, striking NE-SW. The CFZ separates the Cabo de Gata Block (Neogene volcanics) against Neogene basinal sediments and the metamorphic basement of the Alpujarride Complex.Three sites along the CFZ were examined with Ground Penetrating Radar techniques. Radar surveying was complemented by structural studies. Shallow-depth high-resolution imaging of Tyrrhenian beach terraces exhibited both vertical and minor horizontal offsets in the Rambla Morales site in the south. A sinistral strike-slip fault associated with minor thrust faults in a positive flower structure was detected in the middle segment along the La Serrata ridge, sealed by a caliche of late Pleistocene age (> 10 ka). The Playa de Bolmayor section yielded sub-surface evidence for several faults probably related to recent activity of individual fault strands. Our results suggest a distributed tectonic activity of the CFZ during the Late Quaternary.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Faults (Geology) Thrust faults (Geology)"

1

Sturms, Jason M. "Surficial mapping and kinematic modeling of the St. Clair thrust fault, Monroe County, West Virginia." Morgantown, W. Va. : [West Virginia University Libraries], 2008. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5597.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2008.
Title from document title page. Document formatted into pages; contains vii, 84 p. : ill. (some col.), maps (some col.). Includes abstract. Includes bibliographical references (p. 75-78).
APA, Harvard, Vancouver, ISO, and other styles
2

McClay, K. R. "Structural geology and tectonics /." Title page, contents and abstract only, 2000. http://web4.library.adelaide.edu.au/theses/09SD/09sdm126.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Roberts, Gerald Patrick. "Deformation and diagenetic histories around foreland thrust faults." Thesis, Durham University, 1990. http://etheses.dur.ac.uk/6258/.

Full text
Abstract:
This thesis is concerned with the relationship between deformation and fluid flow along thrust zones. The study was carried out in the Vercors, French Sub-Alpine Chains foreland thrust belt. Study of the thermal alteration of organic matter within the area suggests that prior to west-north-west directed thrusting within the Vercors basin in post middle Miocene times, the rocks now exposed at the surface had not been buried beneath a large thickness of foredeep sediments and remained within the diagenetic realm. Deeper buried levels within the stratigraphy passed into the hydrocarbon generation window prior to thrusting within the Vercors basin. The rocks presently exposed at the surface also remained in the diagenetic realm during and after the thrusting which suggests that thrust sheet loading did not significantly contribute to thermal alteration of organic matter. The structures of the thrust belt may have been possible structural traps for any hydrocarbons which underwent re-migration during the thrusting. The structures have been exhumed by erosion during isostatic uplift. The Rencurel Thrust and overlying Rencurel Thrust Sheet were selected for special study as they are of regional structural importance. The thrust emplaces Urgonian limestones onto Miocene molasse sediments at present erosion levels. The thrust sheet is internally deformed by thrusts and folds. Structural data indicate that the deformation within the thrust sheet and within the Rencurel Thrust Zone occurred during one kinematically linked phase of thrusting. The Rencurel Thrust Zone itself is around 100 metres thick. The higher part of the thrust zone is composed of an array of minor faults developed within the Urgonian. These fault zones are generally less than 10cm wide and are coated in fault gouge. This array of faults is underlain by a gouge zone along the thrust contact between the Urgonian and the Miocene which is several metres thick. The gouge zones were all formed during the action of diffusive mass transfer (DMT) and cataclasis as deformation mechanisms. The wall-rocks to the gouge zones are relatively undeformed by the action of cataclasis. Cataclasis is dilatant and produces fracture porosity which increases the permeability of the fault zones whilst DMT reduces the porosity and permeability of the fault zones due to cement precipitation and pressure dissolution. Cross- cutting relationships between the microstructures indicating the action of cataclasis and DMT, suggest that the porosity and permeability of the fault rocks changed in a complex manner during the incremental deformation. This has important implications for assessing syn-kinematic fluid migration through fault zones. The fault rocks exposed at the surface today are relatively impermeable compared to undeformed wall-rocks away from the fault zone which have permeabilities comparable to those found within hydrocarbon reservoirs. The thrust zone may have been a seal in the sub-surface after the cessation of thrusting but prior to uplift and erosion. Early distributed deformation produced an array of minor faults within the Urgonian. Cataclasis had ceased along these faults before later deformation became localised along the gouge zone which exists along the thrust contact between the Urgonian and the Miocene rocks. Early deformation was accompanied by the migration through fracture porosity of pore waters which were saturated with respect to calcite and had interacted with organic matter which was being thermally altered. This fluid flow system was not connected to fluid flow higher in the stratigraphy which resulted in the precipitation of ferroan calcite within fracture porosity in the Senonian limestones. Late deformation within the thrust zone was accompanied by the migration of hydrocarbons and pore waters saturated with respect to calcite and pyrite. All the pore waters involved in migration through the active thrust zone seem to have migrated up-dip. They migrated from levels in the stratigraphy where organic metamorphism and the maturation of hydrocarbons were occurring to levels in the deformed section which have always remained within the diagenetic realm. Ferroan calcite, pyrite and traces of hydrocarbons have not been found outside the gouge zone along the thrust contact between the Urgonian and Miocene. The fracturing which occurred to open this migration pathway did not re- fracture the inactive minor faults which were impermeable at this time. Fluid migration at this time was confined to beneath the zone of impermeable minor faults in the Urgonian and did not contribute to the diagenesis of the rocks above the thrust zone. Hydrocarbons could not have entered the hanging-wall anticline above the thrust zone from this migration pathway. The fracturing at this time did not produce connected fracture networks pervasively throughout the thrust zone which suggests that the deformation may not have released large amounts of energy in the form of seismic waves.
APA, Harvard, Vancouver, ISO, and other styles
4

Patthoff, D. Alex. "Structure and crustal balance of the Herald Arch and Hope Basin in the Chukchi Sea, Alaska." Morgantown, W. Va. : [West Virginia University Libraries], 2008. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5888.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2008.
Title from document title page. Document formatted into pages; contains vii, 106 p. : ill. (some col.), col. maps. Includes abstract. Includes bibliographical references (p. 100-103).
APA, Harvard, Vancouver, ISO, and other styles
5

Hoehn, Jack R. "Low-Temperature Deformation of Mixed Siliciclastic & Carbonate Fault Rocks of the Copper Creek, Hunter Valley, and McConnell Thrusts." Oberlin College Honors Theses / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=oberlin1400002733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lock, Jane. "Interpreting how low-temperature thermochronometric data in fold-and-thrust belts : an example from the Western Foothills, Taiwan /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/6698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wigginton, Sarah S. "The Influence of Mechanical Stratigraphy on Thrust-Ramp Nucleation and Propagation of Thrust Faults." DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/7344.

Full text
Abstract:
Our current understanding of thrust fault kinematics predicts that thrust faults nucleate on low angle, weak surfaces before they propagate upward and forms a higher angle ramp. While this classic kinematic and geometric model serves well in some settings, it does not fully consider the observations of footwall deformation beneath some thrust faults. We examine an alternative end-member model of thrust fault formation called “ramp-first” fault formation. This model hypothesizes that in mechanically layered rocks, thrust ramps nucleate in the structurally strong units, and that faults can propagate both upward and downward into weaker units forming folds at both fault tips. To explore this model, we integrate traditional structural geology field methods, two dimensional cross section reconstructions, and finite element modeling. Field data and retro-deformable cross sections suggest that thrust faults at the Ketobe Knob, in Utah nucleated in strong layers and propagated upward and downward creating folds in weak layers. These findings support the hypothesis that thrust faults and associated folds at the Ketobe Knob developed in accordance with the ramp-first kinematic model.We can apply this understanding of the mechanics behind thrust fault nucleation and propagation in mechanically layered stratigraphy to a wide range of geological disciplines like structural geology and tectonics, seismology, and petroleum geology. By incorporating our knowledge of lithology into fault models, geologists are more likely to correctly interpret structures with limited data sets.
APA, Harvard, Vancouver, ISO, and other styles
8

Tully, Justin Edward. "Structural interpretation of the Elk Range thrust system, Western Colorado, USA." Thesis, Montana State University, 2009. http://etd.lib.montana.edu/etd/2009/tully/TullyJ0509.pdf.

Full text
Abstract:
The Elk Mountains of western Colorado expose Pennsylvanian-Permian strata that were deposited along the western margin of the Ancestral Central Colorado Trough. These rocks were displaced southwestward in Late Cretaceous-Early Paleogene time along the northeast-dipping Elk Range thrust system. The thrust system trends southeast from Redstone, CO to the Fossil Ridge wilderness and includes the en echelon Elk Range and Brush Creek thrust faults. This thrust system represents the deeply eroded up-plunge core of a major Laramide basement-cored fold in western Colorado, the Grand Hogback monocline. The emergence of the thrust system from the fold's core is well documented at all scales of geologic mapping over the northwest end of the system. This surface relationship is undemonstrated in previous structural interpretations, which invoke a mechanism of gravity sliding within the sedimentary package, induced by vertical basement uplift. To the southeast a critical portion of the system had remained unmapped in any contiguous detail. This critical area exposes the basement roots of the thrust system, as it merges with the reverse-faulted southwestern margin of the Laramide Sawatch Range basement arch. This thesis presents a new structural architecture for the Elk Range thrust system through: 1) new 1:24,000 scale mapping of the emergent root zone, 2) regional balanced cross-section analysis 3) demonstration of a genetic relationship with the Grand Hogback monocline, and 4) consideration of contemporary basement-involved foreland contraction models. The fault system is a basement-rooted, right-stepping, en echelon thrust front. The Elk Range thrust sheet is truncated by high-angle reverse faults to the east and the Brush Creek thrust becomes steeper and merges with reverse faults to the southeast. The western Sawatch front shows evidence for late-stage, north-south directed contraction. Thus, the Elk Range thrust system represents an inverted segment of the western Ancestral Colorado Trough. Structurally, it represents a transitional deformation regime between fold-shortening (Grand Hogback monocline) and high-angle reverse-faulting (Sawatch arch). Together, this tectonic continuum marks Colorado's westernmost Laramide deformation front against the Colorado Plateau. Younger deformation is observed and discussed with respect to the region's dynamic transition from Laramide contraction to Rio Grande rifting.
APA, Harvard, Vancouver, ISO, and other styles
9

Watkins, Hannah E. "Characterising and predicting fracture patterns in a sandstone fold-and-thrust belt." Thesis, University of Aberdeen, 2015. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=227123.

Full text
Abstract:
Fracture distribution in a fold and thrust belt is commonly thought to vary depending on structural position, strain, lithology and mechanical stratigraphy. The distribution, geometry, orientation, intensity, connectivity and fill of fractures in a reservoir are all important influences on fractured reservoir quality. The presence of fractures is particularly beneficial in reservoirs that contain little matrix porosity or permeability, for example tight sandstones. In these examples fractures provide essential secondary porosity and permeability that enhance reservoir production. To predict how reservoir quality may fluctuate spatially, it is important to understand how fracture attributes may vary, and what controls them. This research aims to investigate the influence of structural position on fracture attribute variations. Detailed fracture data collection is undertaken on folded sandstone outcrops. 2D forward modelling and 3D model restorations are used to predict strain distribution in the fold-and-thrust belt. Relationships between fracture attributes and predicted strain are determined. Discrete Fracture Network (DFN) modelling is then undertaken to predict fracture attribute variations. DFN modelling results are compared with field fracture data to determine how well fractured reservoir quality can be predicted. Field data suggests strain is a major controlling factor on fracture formation. Fractures become more organised and predictable as strain increases. For example in high strain forelimb regions, fracture intensity and connectivity are high, and fracture orientations are consistent. In lower strain regions, fracture attributes are much more variable and unpredictable. Fracture variations often do not correspond to strain fluctuations, and correlations can be seen between fracture intensity and lithology. Reservoir quality is likely to be much more variable in low strain regions than high strain regions. DFN modelling is also challenging because fracture attribute variations in low strain regions do not correspond to strain, and therefore cannot be predicted.
APA, Harvard, Vancouver, ISO, and other styles
10

Ward, Emily M. Geraghty. "Development of the Rocky Mountain foreland basin combined structural, mineralogical, and geochemical analysis of basin evolution, Rocky Mountain thrust front, northwest Montana /." CONNECT TO THIS TITLE ONLINE, 2007. http://etd.lib.umt.edu/theses/available/etd-09262007-094800/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Faults (Geology) Thrust faults (Geology)"

1

Klint, Knud Erik S. The Hanklit glaciotectonic thrust fault complex, Mors, Denmark. Copenhagen: Geological Survey of Denmark, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lateral ramps in the folded Appalachians and in overthrust belts worldwide: A fundamental element of thrust-belt architecture. Washington: U.S. G.P.O., 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

A, Bukharov A., ed. Nadvigovye i sharʹi͡a︡zhnye struktury Pribaĭkalʹi͡a︡. Novosibirsk: "Nauka," Sibirskoe otd-nie, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sizykh, V. I. Sharʹi︠a︡zhno-nadvigovai︠a︡ tektonika okrain drevnikh platform. Novosibirsk: Izd-vo SO RAN, Filial "Geo", 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Thrust fault-related folding. Tulsa, OK: American Association of Petroleum Geologists, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Emplacement mechanisms of nappes and thrust sheets. Dordrecht: Kluwer Academic Publishers, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ikeda, Yasutaka. Daiyonki gyakudansō atorasu. Tōkyō: Tōkyō Daigaku Shuppankai, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brandon, M. T. The late Cretaceous San Juan thrust system, San Juan Islands, Washington. Boulder, Colo: Geological Society of America, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Roering, C. Thrust-movement quantification and quartz-vein formation in Witwatersrand quartzites. Johannesburg: Economic Geology Research Unit, University of the Witwatersrand, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Klasner, J. S. Thick-skinned, south-verging backthrusting in the Felch and Calumet troughs area of the Penokean Orogen, northern Michigan. Washington, DC: U.S. G.P.O., 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Faults (Geology) Thrust faults (Geology)"

1

Hansen, Lars. "Age Relationships between Normal and Thrust Faults near the Caledonian Front at the Vietas Hydropower Station, Northern Sweden." In The Caledonide Geology of Scandinavia, 91–100. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2549-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McConnell, Keith I., Robert D. Hatcher, and Teunis Heyn. "Day 9: Geology of the Sauratown Mountains window." In Southern Appalachian Windows: Comparison of Styles, Scales, Geometry and Detachment Levels of Thrust Faults in the Foreland and Internides of a Thrust-Dominated Orogen: Atlanta, Georgia to Winston-Salem, North Carolina June 28–July 8, 1989, 78–86. Washington, D. C.: American Geophysical Union, 1989. http://dx.doi.org/10.1029/ft167p0078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Steltenpohl, Mark G. "Day 2: Geology of the southernmost exposures of the Pine Mountain window, Alabama." In Southern Appalachian Windows: Comparison of Styles, Scales, Geometry and Detachment Levels of Thrust Faults in the Foreland and Internides of a Thrust-Dominated Orogen: Atlanta, Georgia to Winston-Salem, North Carolina June 28–July 8, 1989, 21–28. Washington, D. C.: American Geophysical Union, 1989. http://dx.doi.org/10.1029/ft167p0021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Groshong, Richard H. "Properties of Faults." In 3-D Structural Geology, 181–217. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-31055-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Park, R. G. "Faults and fractures." In Foundations of Structural Geology, 1–7. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-011-6576-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Groshong, Richard H. "Faults and Unconformities." In 3-D Structural Geology, 155–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03912-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hooper, Robert J., and Robert D. Hatcher. "Day 1: The geology of the east end of the Pine Mountain window and adjacent Piedmont, central Georgia." In Southern Appalachian Windows: Comparison of Styles, Scales, Geometry and Detachment Levels of Thrust Faults in the Foreland and Internides of a Thrust-Dominated Orogen: Atlanta, Georgia to Winston-Salem, North Carolina June 28–July 8, 1989, 11–20. Washington, D. C.: American Geophysical Union, 1989. http://dx.doi.org/10.1029/ft167p0011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Groshong, Richard H. "Mapping Faults and Faulted Surfaces." In 3-D Structural Geology, 197–244. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03912-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sanz de Galdeano, Carlos, José Miguel Azañón, João Cabral, Patricia Ruano, Pedro Alfaro, Carolina Canora, Marta Ferrater, et al. "Active Faults in Iberia." In The Geology of Iberia: A Geodynamic Approach, 33–75. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10931-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jordan, Teresa E., Peter B. Flemings, and James A. Beer. "Dating Thrust-Fault Activity by Use of Foreland-Basin Strata." In Frontiers in Sedimentary Geology, 307–30. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3788-4_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Faults (Geology) Thrust faults (Geology)"

1

Moustafa, A. "Faults and Fractures in Carbonate Reservoirs: Khuff Formation of Arabian Peninsula." In Third Arabian Plate Geology Workshop. Netherlands: EAGE Publications BV, 2011. http://dx.doi.org/10.3997/2214-4609.20145640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chinellato, F., D. Parlov, Z. Marić-Đureković, M. Mele, M. Borghi, and P. Balossino. "Looking Deeper for Fractures and Faults Extension: a Case Study from Croatia." In Second EAGE Borehole Geology Workshop. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201702390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Casini, G., J. Verges, I. Romaire, N. Fernandez, E. Casciello, S. Homke, E. Saura, et al. "Fault & Fracture Development in Foreland Fold and Thrust Belts - Insight from the Lurestan Province, Zagros Mountains, Iran." In Second Arabian Plate Geology Workshop 2010. Netherlands: EAGE Publications BV, 2010. http://dx.doi.org/10.3997/2214-4609.20145359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brunstad, H., T. Thorsnes, S. Chand, A. Lepland, and P. Lågstad. "Shallow Geology, Shallow Faults and Fluid Flow in Western Barents Sea." In EAGE Shallow Anomalies Workshop. Netherlands: EAGE Publications BV, 2014. http://dx.doi.org/10.3997/2214-4609.20147420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Glushkova, Yelena. "ORE-BEARING METASOMATIC FORMATIONS IN AREAS OF DEEP-SEATED FAULTS." In 14th SGEM GeoConference on SCIENCE AND TECHNOLOGIES IN GEOLOGY, EXPLORATION AND MINING. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgem2014/b11/s1.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yao, Haibo, Weidong Lv, Yansheng Geng, and Fan Wang. "Research of Prediction Method on Geology Faults of Karst Area in Southwest of Guangxi Province." In Transportation Research Congress 2016. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784481240.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alsulami, S., M. Ameen, C. Hofmann, A. Salem, and M. Khan. "An Evaluation of Pre-Cambrian to Paleozoic Faults Pattern and Rift Basin Architecture, Central Saudi Arabia." In Seventh Arabian Plate Geology Workshop: Pre-Cambrian to Paleozoic Petroleum Systems in the Arabian Plate. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201900209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Avila-Olivera, Jorge A., Paolo Farina, Victor H. Garduño-Monroy, Klaudia Oleschko, Sergei Cherkasov, José Luís Palacio Prieto, Vianey Torres Argüelles, Claudia I. Gaona Salado, Ana Gabriela Castañeda Miranda, and Sergio Aurelio Zamora Castro. "Integration of InSAR and GIS in the Study of Surface Faults Caused by Subsidence-Creep-Fault Processes in Celaya, Guanajuato, Mexico." In GIS IN GEOLOGY AND EARTH SCIENCES: 4th International Conference “In Vista of New Approaches for the Geoinformatics”. AIP, 2008. http://dx.doi.org/10.1063/1.2937287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Waters, Brent, Daniel Doctor, and Joel Maynard. "Using Geophysics to Map Bedrock Faults, Dikes, and Surficial Geology in Relation to Karst Features in the Briery Branch Quadrangle, Rockingham County, Virginia." In National Cave and Karst Research Institute Symposium 7. National Cave and Karst Research Institute, 2018. http://dx.doi.org/10.5038/9780991000982.1024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Granath, James, Rolf Rango, Pete Emmet, Colin Ford, Robert Lambert, and Michael Kasli. "New Viewpoint on the Geology and Hydrocarbon Prospectivity of the Seychelles Plateau." In SPE/AAPG Africa Energy and Technology Conference. SPE, 2016. http://dx.doi.org/10.2118/afrc-2556681-ms.

Full text
Abstract:
ABSTRACT We have reprocessed, re-imaged, and interpreted 10000+ km of legacy 2D seismic data in the Seychelles, particularly in the western part of the Plateau. Seychelles data have been difficult to image, particularly for the Mesozoic section: volcanics are a major attenuator of low frequency signal, and a hard water bottom contributes to signal problems. Enhanced low frequency techniques were applied to improve the signal fidelity in the 4 to 20 Hz range, and to remove spectral notches of shallow geologic origin. These efforts have allowed a reasonable view of the structure of the Plateau to a depth equivalent to about 3.5 sec TWT, and permit a comparison of areas atop the Plateau to the south coast where the three 1980's Amoco wells were drilled. It is clear that the main Plateau area of the Seychelles (excluding the outlying territories) is comprised of several separate basins, each with similar Karoo, Cretaceous, and Cenozoic sections that relate to the East African and West Indian conjugate margins, but the basins each have nuanced tectono-stratigraphic histories. The previously recognized Correira Basin in the SE and the East and West South Coast Basins face the African conjugate margin; other unimaged ones complete the periphery of the Plateau. The interior of the Plateau is dominated by the Silhouette Basin to the west of the main islands and the Mahé Basin to the east. The co astal basins have harsh tectono-thermal histories comparable to other continental margins around the world; they are typically characterized by stretching, subsidence and breakaway from their respective conjugate margins. In contrast the interior basins are comparable to ‘failed’ rift systems such as the North Sea or the Gulf of Suez. The South Coastal Basins, for example, tend to be more extended which complicated interpretation of the Amoco wells, but they have significant upside, as exemplified by the Beau Vallon structure. The interior basins, on the other hand, have typically simpler structure: the Silhouette Basin contains a system of NW-trending linked normal faults that could easily harbor North Sea-sized hydrocarbon traps with a variety of rift-related reservoir possibilities. Bright, reflective, hard volcanic horizons are less common than usually presumed, but most of the basins may contain considerable pyroclastic material in parts of the section. All of the basins appear to be predominantly oil prone, with considerable upside prospectivity.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Faults (Geology) Thrust faults (Geology)"

1

Chorlton, L. B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2007. http://dx.doi.org/10.4095/223767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography