Academic literature on the topic 'Fe-Cr alloys'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fe-Cr alloys.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fe-Cr alloys"
Bormio-Nunes, Cristina, Joao Pedro Serra, Fabiana Sinibaldi Barbosa, Mateus B. S. Dias, Reiko Sato Turtelli, Muhammad Atif, and Roland Grossinger. "Magnetostriction of Fe–Cr and Fe–Cr–B Alloys." IEEE Transactions on Magnetics 52, no. 5 (May 2016): 1–4. http://dx.doi.org/10.1109/tmag.2015.2512271.
Full textDanielewski, Marek, Robert Filipek, M. Pawełkiewicz, Dominika Klassek, and Krzysztof Jan Kurzydlowski. "Modelling of Oxidation of Fe-Ni-Cr Alloys." Defect and Diffusion Forum 237-240 (April 2005): 958–64. http://dx.doi.org/10.4028/www.scientific.net/ddf.237-240.958.
Full textUstinovshikov, Y., and B. Pushkarev. "Morphology of Fe–Cr alloys." Materials Science and Engineering: A 241, no. 1-2 (January 1998): 159–68. http://dx.doi.org/10.1016/s0921-5093(97)00484-x.
Full textMurayama, Yonosuke, and Hiroto Shioiri. "Phase Stability and Mechanical Properties of Metastable Ti-X-Sn-Zr (x=Cr, Nb or Fe) Alloys." Materials Science Forum 941 (December 2018): 1228–31. http://dx.doi.org/10.4028/www.scientific.net/msf.941.1228.
Full textCui, Gongjun, Jin Wei, and Gongxiong Wu. "Wear behavior of Fe-Cr-B alloys under dry sliding condition." Industrial Lubrication and Tribology 67, no. 4 (June 8, 2015): 336–43. http://dx.doi.org/10.1108/ilt-07-2014-0065.
Full textMurata, Yoshinori, Tomonori Kunieda, Kouji Yamashita, Toshiyuki Koyama, Effendi, and Masahiko Morinaga. "Diffusion and Interaction of W and Re in Fe-Cr Alloys." Defect and Diffusion Forum 258-260 (October 2006): 231–36. http://dx.doi.org/10.4028/www.scientific.net/ddf.258-260.231.
Full textŠćepanović, M., T. Leguey, I. García-Cortés, F. J. Sánchez, C. Hugenschmidt, M. A. Auger, and V. de Castro. "Sequential ion irradiations on Fe-Cr and ODS Fe-Cr alloys." Nuclear Materials and Energy 25 (December 2020): 100790. http://dx.doi.org/10.1016/j.nme.2020.100790.
Full textSharan, A., T. Nagasaka, and A. W. Cramb. "Surface tensions of liquid Fe-Cr and Fe-Cr-N alloys." Metallurgical and Materials Transactions B 25, no. 4 (August 1994): 626–28. http://dx.doi.org/10.1007/bf02650084.
Full textWang, Jintao, Shouping Liu, and Xiaoyu Han. "Study on σ Phase in Fe–Al–Cr Alloys." Metals 9, no. 10 (October 11, 2019): 1092. http://dx.doi.org/10.3390/met9101092.
Full textYamashita, Kouji, Tomonori Kunieda, Koutarou Takeda, Yoshinori Murata, Toshiyuki Koyama, and Masahiko Morinaga. "Diffusion of Refractory Elements in Ternary Iron Alloys." Defect and Diffusion Forum 273-276 (February 2008): 746–51. http://dx.doi.org/10.4028/www.scientific.net/ddf.273-276.746.
Full textDissertations / Theses on the topic "Fe-Cr alloys"
Hu, Rong. "Irradiation effects on Fe-Cr alloys." Thesis, University of Oxford, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.560928.
Full textXu, Sen. "Characterisation of radiation damage in Fe-Cr-Alloys." Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.534015.
Full textFerguson, David Bruce. "Characterization of high damping Fe-Cr-Mo and Fe-Cr-Al alloys for naval ships application." Thesis, Monterey, California. Naval Postgraduate School, 1988. http://hdl.handle.net/10945/22942.
Full textSorour, Ahmad. "Microstructure and tribology of Fe-Cr-B-based alloys." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123081.
Full textL'usage cause la perte du materiel de pieces mobiles et d'outils utilises dans plusieurs domaines. L'usage peut ^etre reduit en utilisant des materiaux appropries et des rev^etements dont l'utilisation demande la comprehension de leure microstructure, leures proprietes et leur comportement tribologique. Un des materiaux aillant une haute resistance a l'usage est le systeme d'alliage Fe-Cr-B. Les alliages a base Fe-Cr-B sont fabriques par pulverisation thermal, soudure et des processus de frittage. C'etait decouvert que la microstructure, les proprietes et la performance tribologique varie d'une procede a l'autre. Cette dissertation est centre sur les avances concues en utilisant des recentes procedes pour fabriquer ces alliages. Le but primaire de cette recherche est de comprendre la microstructure et la tribology des alliages Fe-Cr-B fabriques par soudure controlled short-circuit metal inert gas (CSC-MIG) et frittage ash (SPS).CSC-MIG etait utilise pour souder un alliage llamente Fe-28.2Cr-3.8B-1.5Si-1.5Mn (wt.%) sur un substrat d'acier 1020. SPS etait utilise pour consolider un alliage en poudre Fe-45Cr-5.9B-2Si-0.1C (wt.%) fabrique par atomization a gaz. Les comportements de solidication du poudre atomize par gaz et des soudures etaient etudies a travers des calculs thermodynamiques. Une caracterisation microstructurielle, des mesures de durete et des tests de tribology etaient performes pour ces alliages. Durant la refroidissement, la phase primaire (Cr,Fe)2B a commence a se developper suivi par une formation eutectique du (Cr,Fe)2B et de la phase en solution solide corps-centre cubique (BCC) a base de fer. Puisque la poudre contenait des petites quantites de C, le (Cr,Fe)7C3 a precipite a la n du solidication. La soudure CSC-MIG etait composee de plaques orthorhombiques de phase primaire et secondaire de (Cr,Fe)2B a 44 wt.% integre dans 56 wt.% d'une solution solide a base de Fe BCC content du Fe, Cr, Mn et Si. Le specimen prepare par SPS contenait des plaques de 65 wt.% (Cr,Fe)2B et des precipites de 1 wt.% (Cr,Fe)7C3 dispersees dans une solution solide a base de Fe BCC de 34 wt.% aillant du Fe, Cr et Si. La phase (Cr,Fe)2B etait plus grand dans la soudure que dans le specimen fritte. La durete du (Cr,Fe)2B etait 24 GPa sans dependance sur la composition de l'alliage ni les parametres de procede. Pendant que la quantite de B s'accroissait, la fraction du (Cr,Fe)2B s'accroissait aussi. Pendant que la fraction de (Cr,Fe)2B s'accroissait, la durete entiere des specimens s'accroissait d'une facon lineaire. Quand la durete du specimen et la taille du (Cr,Fe)2B s'accroissaient, la resistance abrasif d'usage s'accroissait pendant que la resistance glissant d'usage etait independant de la durete mais s'ameliorait pendant que la taille du (Cr,Fe)2B s'accroissait. Le mechanism de l'usage abrasif etait la microcoupure pendant que le mechanism de l'usage glissant etait l'adhesion de l'oxidation mineure.
Sorsh, Frans. "Assessment of creep damage in Fe-Ni-Cr alloys." Thesis, KTH, Hållfasthetslära (Avd.), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259516.
Full textDet är bara en tidsfråga innan komponenter som arbetar i högtemperaturförhållanden misslyckas pga kryp. Att designa med avseende på kryp är därmed viktigt för att maximera livslängden och reducera kostnader som kan komma från underhåll och från utbyte av komponenter. I detta examensarbete används metallografiska metoder och finita element modellering för att bedöma krypskador i en vätgasreformer. Vätgasreformern, som är tillverkad i Fe-Ni-Cr legeringar, togs ur drift och undersöktes metallografiskt med hjälp av replikprovning och hårdhetsprovning samt med finita element modellering av svetsar. En djupgående litteraturstudie utfördes för att öka förståelsen av kryp, specifikt i Fe-Ni-Cr legeringar och även modellering av kryp generellt. Mikrostrukturen från utvalda provbitar undersöktes och krypskador kartläggdes för att sedan jämföra med en krypanalys av svetsarna där 100 000 timmars kryp simulerades. Krypanalysen resulterade i höga spänningar och kryptöjningar upp till maximalt 0.95% i svetsgränserna vilket gav realistiska representationer av töjningsdistributionen jämfört med metallografiska resultaten. Hårdhetsmätningar indikerade att ett smalt område med förändrade mekaniska egenskaper fanns utmed svetsgränserna. Detta område, den värmepåverkade zonen, var mest utsatt för krypskador med mikrosprickor uppemåt 2 mm i längd. Kryptöjningar som erhölls från simuleringen gav inte en tillräckligt bra uppskattning av kryptöjningarna – de krypskador som observerades motsvarar lokalt högre töjning. Slutsatsen är att en materialmodell som tar hänsyn till tertiärkryp skulle i det här fallet ge en mer realistisk representation i FEM för Fe-Ni-Cr legeringar.
Pan, Li-Mei. "Phase equilibria and elastic moduli of rapidly solidified Fe-Cr-Mo-B and Fe-Cr-Ni-B alloys." Thesis, University of Surrey, 1992. http://epubs.surrey.ac.uk/2387/.
Full textZhou, Jing. "Experimental study of phase separation in Fe-Cr based alloys." Licentiate thesis, KTH, Metallografi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-119230.
Full textQC 20130308
EverhartC, Charles. "The Electrodeposition of Fe-Ni-Cr Alloys from Aqueous Electrolytes." Cleveland, Ohio : Case Western Reserve University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1252092401.
Full textTitle from PDF (viewed on 2010-01-28) Department of Chemical Engineering Includes abstract Includes bibliographical references and appendices Available online via the OhioLINK ETD Center
Koseki, Toshihiko 1958. "Undercooling and rapid solidification of Fe-Cr-Ni ternary alloys." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/12040.
Full textFlores, Carlos D. (Carlos Daniel). "Evaluation of radiation induced segregation in Fe-Ni-Cr alloys." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/44597.
Full textIncludes bibliographical references.
by Carlos D. Flores.
M.S.
Books on the topic "Fe-Cr alloys"
Allison, J. E. Fe-Ni-Cr alloys for coatings and electroforms. Washington, DC: Dept. of the Interior, 1989.
Find full textAllison, J. E. Fe-Ni-Cr alloys for coatings and electroforms. Pittsburgh, PA: U.S. Dept. of the Interior, Bureau of Mines, 1989.
Find full textUnited States. Bureau of Mines. Fe-Ni-Cr alloys for coatings and electroforms. S.l: s.n, 1989.
Find full textFerguson, David Bruce. Characterization of high damping Fe-Cr-Mo and Fe-Cr-Al alloys for naval ships application. Monterey, California: Naval Postgraduate School, 1988.
Find full textStubbs, A. M. Chromium recovery from high-temperature shift Cr-Fe catalysts. Pittsburgh, PA: U.S. Dept. of the Interior, Bureau of Mines, 1988.
Find full textStubbs, A. M. Chromium recovery from high-temperature shift Cr-Fe catalysts. Washington, DC: U.S. Dept. of the Interior, 1988.
Find full textCiaś, Andrzej. Development and properties of Fe-Mn-(Mo)-(Cr)-C sintered structural steels. Kraków: Wydawnictwa AGH, 2004.
Find full textMotta, A. T. Amorphization kinetics of Zr(Cr, Fe)₂ under ion irradiation. Chalk River, Ont: AECL Research, 1994.
Find full textMotta, A. T. Amorphization kinetics of Zr(Cr, Fe)2 under ion irradiation. Chalk River, Ont: Chalk River Laboratories, 1994.
Find full textWard, Michael C. L. An EXAFS structural study of the passive films formed on Fe-Cr alloys. [s.l.]: typescript, 1986.
Find full textBook chapters on the topic "Fe-Cr alloys"
Kaneko, T., and T. Kanomata. "3.1.1.3 Cr-Fe." In Magnetic Properties of d-Elements, Alloys and Compounds Under Pressure, 28–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41834-1_9.
Full textKaneko, T., and T. Kanomata. "3.1.4.1 Co-Fe-Cr." In Magnetic Properties of d-Elements, Alloys and Compounds Under Pressure, 49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41834-1_16.
Full textCarow-Watamura, U., D. V. Louzguine, and A. Takeuchi. "Cr-Fe-P (222)." In Physical Properties of Ternary Amorphous Alloys. Part 3: Systems from Cr-Fe-P to Si-W-Zr, 37–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14133-1_5.
Full textCarow-Watamura, U., D. V. Louzguine, and A. Takeuchi. "Cr-Fe-Zr (223)." In Physical Properties of Ternary Amorphous Alloys. Part 3: Systems from Cr-Fe-P to Si-W-Zr, 43–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14133-1_6.
Full textMcCafferty, E. "A Recent Model of Passivity for Fe-Cr and Fe-Cr-Ni Alloys." In SpringerBriefs in Materials, 63–70. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15648-4_3.
Full textLopez-Hirata, Victor M., Hector J. Dorantes Rosales, Erika O. Avila-Davila, and Maribel L. Saucedo-Muñoz. "Phase Decomposition in Isothermally-Aged Fe-Cr Alloys." In Supplemental Proceedings, 581–88. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118357002.ch73.
Full textKawazoe, Yoshiyuki, Ursula Carow-Watamura, and Dmitri V. Louzguine. "Structural properties of Cr-Fe-P-Y alloy." In Phase Diagrams and Physical Properties of Nonequilibrium Alloys, 54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-57920-6_15.
Full textKawazoe, Yoshiyuki, Ursula Carow-Watamura, and Dmitri V. Louzguine. "Structural properties of C-Cr-Fe-Y alloy." In Phase Diagrams and Physical Properties of Nonequilibrium Alloys, 14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-57920-6_2.
Full textChang, Y. Austin. "Magnetic-Induced Tricritical Point in Alloys and the Low-Temperature Fe-Ni and Fe-Ni-Cr Phase Diagrams." In Thermochemistry of Alloys, 85–106. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1027-0_5.
Full textLin, Renrong, Ming Zhou Cao, and Rui Yang. "Damping Capacity of the Fe-Cr-Al Based Alloys." In Materials Science Forum, 261–64. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.261.
Full textConference papers on the topic "Fe-Cr alloys"
Skripnyak, V. A., E. S. Emelyanova, M. V. Sergeev, N. V. Skripnyak, and O. S. Zinovieva. "Strength and plasticity of Fe-Cr alloys." In ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2016: Proceedings of the International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2016. Author(s), 2016. http://dx.doi.org/10.1063/1.4966502.
Full textMansour, S., N. Boutarek, H. Aid, and S. E. Amara. "Phase Equilibrium in the Fe-Cr-Nb Alloys." In XXXV JEEP – 35th Conference on Phase Equilibria. Les Ulis, France: EDP Sciences, 2009. http://dx.doi.org/10.1051/jeep/200900003.
Full textNguyen-Manh, D., Pui-Wai Ma, M. Yu Lavrentiev, and S. L. Dudarev. "Constrained non-collinear magnetism in disordered Fe and Fe-Cr alloys." In SNA + MC 2013 - Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo, edited by D. Caruge, C. Calvin, C. M. Diop, F. Malvagi, and J. C. Trama. Les Ulis, France: EDP Sciences, 2014. http://dx.doi.org/10.1051/snamc/201401302.
Full textMahmud, Md Sultan, M. A. Hakim, S. Manjura Hoque, S. S. Sikder, Asit Kumar Gain, Per Nordblad, Amitabha Ghoshray, and Bilwadal Bandyopadhyay. "Crystallization Behavior Of Cr Substituted Fe-Based Nanocrystalline Alloys." In MAGNETIC MATERIALS: International Conference on Magnetic Materials (ICMM-2007). AIP, 2008. http://dx.doi.org/10.1063/1.2928981.
Full textSporer, Dieter R., and Ingo Reinkensmeier. "High Vacuum Brazing of Fe-Cr-Al-Y Honeycomb." In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53407.
Full textYarmoshchuk, Yevhenii, Petro Teselko, Mykhailo Semen'ko, Taras Mika, Galina Zelinskaya, and Victor Nosenko. "Structural Investigations of Amorphous Fe-B-P-Nb-Cr Alloys." In 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP). IEEE, 2018. http://dx.doi.org/10.1109/nap.2018.8914933.
Full textKrsjak, V., S. Sojak, M. Petriska, and J. Veternikova. "Non Destructive Examination of Helium Implanted Fe-Cr Model Alloys." In ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-77114.
Full textWyslocki, J. J., J. Olszewski, B. Wyslocki, S. Szymura, and J. Wojcik. "Magnetic hardening mechanism in low-cobalt Fe-Cr-Co Alloys." In International Conference on Magnetics. IEEE, 1990. http://dx.doi.org/10.1109/intmag.1990.734877.
Full textIshwar, Venkat R., William C. Johnson, and George Y. Lai. "Properties and Applications of an Advanced Austenitic Fe-Ni-Cr Alloy." In ASME 1997 Turbo Asia Conference. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-aa-131.
Full textMurugesan, M., S. Chikazawa, and H. Kuwano. "Magnetic properties of nanocrystalline Fe-Cr alloys prepared by mechanical alloying." In IEEE International Magnetics Conference. IEEE, 1999. http://dx.doi.org/10.1109/intmag.1999.837993.
Full textReports on the topic "Fe-Cr alloys"
Scattergood, Ronald O. Nanostructured Fe-Cr Alloys for Advanced Nuclear Energy Applications. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1248881.
Full textCable, J. (Neutron scattering studies of spatial correlations in Fe-V and Fe-Cr alloys). Office of Scientific and Technical Information (OSTI), May 1990. http://dx.doi.org/10.2172/6979180.
Full textGarner, F. A., and H. R. Brager. Neutron-induced swelling of Fe-Cr-Mn ternary alloys. [LMFBR]. Office of Scientific and Technical Information (OSTI), May 1985. http://dx.doi.org/10.2172/5746296.
Full textGelles, D. S., H. R. Brager, and F. A. Garner. Phase development and swelling in Fe-Mn and Fe-Cr-Mn alloys during neutron irradiation. Office of Scientific and Technical Information (OSTI), April 1986. http://dx.doi.org/10.2172/6368963.
Full textField, Kevin G., Richard H. Howard, and Yukinori Yamamoto. Design of Experiment for Irradiation of Welded Candidate Fe-Cr-Al Alloys. Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1209215.
Full textBriggs, Samuel A. Correlative Microscopy of Alpha Prime Precipitation in Neutron-Irradiated Fe-Cr-Al Alloys. Office of Scientific and Technical Information (OSTI), December 2016. http://dx.doi.org/10.2172/1376614.
Full textYang, Ying, Lizhen Tan, and Jeremy T. Busby. Thermal aging modeling and validation on the Mo containing Fe-Cr-Ni alloys. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1185945.
Full textField, Kevin G., Xunxiang Hu, Ken Littrell, Yukinori Yamamoto, Richard H. Howard, and Lance Lewis Snead. Stability of Model Fe-Cr-Al Alloys Under The Presence of Neutron Radiation. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1157142.
Full textGelles, D. S. Microstructural examination of Fe-Cr binary ferritic alloys following irradiation to 15 dpa in FFTF. Office of Scientific and Technical Information (OSTI), February 1986. http://dx.doi.org/10.2172/6337421.
Full textGarner, F. Swelling of solute-modified Fe-Cr-Mn alloys in FFTF (Fast Flux Test Facility)-MOTA. Office of Scientific and Technical Information (OSTI), October 1986. http://dx.doi.org/10.2172/6973188.
Full text