To see the other types of publications on this topic, follow the link: Fe-Cr.

Journal articles on the topic 'Fe-Cr'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fe-Cr.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

AlHajDarwish, M., A. Fert, W. P. Pratt, and J. Bass. "Inverted current-driven switching in Fe(Cr)/Cr/Fe(Cr) nanopillars." Journal of Applied Physics 95, no. 11 (June 2004): 6771–73. http://dx.doi.org/10.1063/1.1667797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bormio-Nunes, Cristina, Joao Pedro Serra, Fabiana Sinibaldi Barbosa, Mateus B. S. Dias, Reiko Sato Turtelli, Muhammad Atif, and Roland Grossinger. "Magnetostriction of Fe–Cr and Fe–Cr–B Alloys." IEEE Transactions on Magnetics 52, no. 5 (May 2016): 1–4. http://dx.doi.org/10.1109/tmag.2015.2512271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Herper, H. C., and P. Entel. "Magnetism and magnetoresistance in Fe/Cr/V/Cr/Fe." Phase Transitions 78, no. 1-3 (January 2005): 169–77. http://dx.doi.org/10.1080/01411590412331316618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sopousek, Jiri, and Jan Vrestal. "Phase Equilibria in the Fe-Cr-Ni and Fe-Cr-C Systems / Phasengleichgewichte in Fe-Cr-Ni- und Fe-Cr-C-Systemen." International Journal of Materials Research 85, no. 2 (February 1, 1994): 111–15. http://dx.doi.org/10.1515/ijmr-1994-850208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Balogh, J., L. F. Kiss, A. Halbritter, I. Kézsmárki, and G. Mihály. "Magnetoresistance of Ag/Fe/Ag and Cr/Fe/Cr trilayers." Solid State Communications 122, no. 1-2 (April 2002): 59–63. http://dx.doi.org/10.1016/s0038-1098(02)00059-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ostrik, P. N. "Alloy powders in the Fe—Cu, Fe—Cr, Fe—Mn, and Fe—Cr—Mn systems." Powder Metallurgy and Metal Ceramics 37, no. 11-12 (November 1998): 575–76. http://dx.doi.org/10.1007/bf02680108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lai, Hsuan-Han, Chih-Chun Hsieh, Chi-Ming Lin, and Weite Wu. "Characteristics of Eutectic α(Cr,Fe)-(Cr,Fe)23C6 in the Eutectic Fe-Cr-C Hardfacing Alloy." Metallurgical and Materials Transactions A 48, no. 1 (October 24, 2016): 493–500. http://dx.doi.org/10.1007/s11661-016-3828-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hasegawa, Hideo. "Electronic and magnetic structures of Fe/Cr/Fe sandwiches and Fe/Cr superlattices." Physical Review B 42, no. 4 (August 1, 1990): 2368–73. http://dx.doi.org/10.1103/physrevb.42.2368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dubberstein, Tobias, Hans-Peter Heller, Jens Klostermann, Rüdiger Schwarze, and Jürgen Brillo. "Surface tension and density data for Fe–Cr–Mo, Fe–Cr–Ni, and Fe–Cr–Mn–Ni steels." Journal of Materials Science 50, no. 22 (July 29, 2015): 7227–37. http://dx.doi.org/10.1007/s10853-015-9277-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schneider, A., S. Hofmann, and R. Kirchheim. "Augerspektroskopische Untersuchungen zur Lochkorrosion von Fe-Cr-, Fe-Mo- und Fe-Cr-Mo-Legierungen." Materials and Corrosion/Werkstoffe und Korrosion 42, no. 4 (April 1991): 169–78. http://dx.doi.org/10.1002/maco.19910420405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Šćepanović, M., T. Leguey, I. García-Cortés, F. J. Sánchez, C. Hugenschmidt, M. A. Auger, and V. de Castro. "Sequential ion irradiations on Fe-Cr and ODS Fe-Cr alloys." Nuclear Materials and Energy 25 (December 2020): 100790. http://dx.doi.org/10.1016/j.nme.2020.100790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Chang, Chin‐An. "Magnetization of (100) Cr/Fe/Cr and Pd/Fe/Pd structures." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 9, no. 4 (July 1991): 2118–22. http://dx.doi.org/10.1116/1.577236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Garifullin, I. A., D. A. Tikhonov, N. N. Garif’yanov, M. Z. Fattakhov, L. R. Tagirov, K. Theiz-Bröhl, K. Westerholt, and H. Zabel. "The proximity effect in an Fe-Cr-V-Cr-Fe system." Journal of Experimental and Theoretical Physics Letters 80, no. 1 (July 2004): 44–48. http://dx.doi.org/10.1134/1.1800213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Sharan, A., T. Nagasaka, and A. W. Cramb. "Surface tensions of liquid Fe-Cr and Fe-Cr-N alloys." Metallurgical and Materials Transactions B 25, no. 4 (August 1994): 626–28. http://dx.doi.org/10.1007/bf02650084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Grabowski, J., M. Przybylski, W. Wulfhekel, M. Rams, and J. Kirschner. "90°coupling in (Fe/Cr/Fe)AFM/Cr/Fe system epitaxially grown on GaAs(001)." Vacuum 74, no. 2 (May 2004): 279–85. http://dx.doi.org/10.1016/j.vacuum.2003.12.149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Jin, S., and G. Chin. "Fe-Cr-Co magnets." IEEE Transactions on Magnetics 23, no. 5 (September 1987): 3187–92. http://dx.doi.org/10.1109/tmag.1987.1065353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wang, Lei, and Reza Darvishi Kamachali. "Density-based grain boundary phase diagrams: Application to Fe-Mn-Cr, Fe-Mn-Ni, Fe-Mn-Co, Fe-Cr-Ni and Fe-Cr-Co alloy systems." Acta Materialia 207 (April 2021): 116668. http://dx.doi.org/10.1016/j.actamat.2021.116668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

YOKOYAMA, Shin-ichiro, and Tsutomu INUI. "Magnetic Properties of Fe-Cr-C and Fe-Cr-C-Ni Alloys." Tetsu-to-Hagane 88, no. 4 (2002): 222–28. http://dx.doi.org/10.2355/tetsutohagane1955.88.4_222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Grabke, H. J., M. Siegers, and V. K. Tolpygo. "Oxidation of Fe-Cr-Al and Fe-Cr-Al-Y Single Crystals." Zeitschrift für Naturforschung A 50, no. 2-3 (March 1, 1995): 217–27. http://dx.doi.org/10.1515/zna-1995-2-314.

Full text
Abstract:
Abstract Single crystal samples of the alloy Fe-20%Cr-5%Al with and without Y-doping were used to study the "reactive element" (RE) effect, which causes improved oxidation behaviour and formation of a protective Al2O3 layer on this alloy. The oxidation was followed by AES at 10-7 mbar O2 up to about 1000 °C. Most observations were peculiar for this low pO2 environment, but yttrium clearly favors the formation of Al-oxide and stabilizes it also under these conditions, probably by favoring its nucleation. The oxides formed are surface compounds of about monolayer thickness, not clearly related to bulk oxides.Furthermore, the morphologies of oxide scales were investigated by SEM, after oxidation at 1000°C for 100 h at 133 mbar O2. On Fe-Cr-Al the scale is strongly convoluted and tends to spalling, whereas the presence of Y leads to flat scales which are well adherent. This difference is explained by a change in growth mechanism. The tendency for separation of oxide and metal was highest for the samples with low energy metal surface, i.e. (100) and (110), the scale was better adherent on the (111) oriented surface and on the polycrystalline specimen, since in the latter cases the overall energy for scale/metal separation is higher.All observations, from the low and from the high pO2 experiments, are discussed in relation to the approximately ten mechanisms proposed in the literature for explanation of the RE effects.
APA, Harvard, Vancouver, ISO, and other styles
20

Vega, A., H. Dreyssé, C. Demangeat, A. Chouairi, and L. C. Balbás. "Antiferromagnetic versus ferromagnetic coupling in Fe/Cr(107) and Cr/Fe(107)." Journal of Applied Physics 76, no. 10 (November 15, 1994): 6989–91. http://dx.doi.org/10.1063/1.358529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Pierce, D. T., Joseph A. Stroscio, J. Unguris, and R. J. Celotta. "Influence of Cr growth on exchange coupling in Fe/Cr/Fe(100)." Physical Review B 49, no. 20 (May 15, 1994): 14564–72. http://dx.doi.org/10.1103/physrevb.49.14564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Idzerda, Y. U., L. H. Tjeng, H. ‐J Lin, G. Meigs, C. T. Chen, and J. Gutierrez. "Magnetic structure of Fe/Cr/Fe trilayers." Journal of Applied Physics 73, no. 10 (May 15, 1993): 6204–6. http://dx.doi.org/10.1063/1.352698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Idzerda, Y. U., L. H. Tjeng, H. J. Lin, C. J. Gutierrez, G. Meigs, and C. T. Chen. "Magnetic structure of Fe/Cr/Fe trilayers." Physical Review B 48, no. 6 (August 1, 1993): 4144–47. http://dx.doi.org/10.1103/physrevb.48.4144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Idzerda, Y. U., L. H. Tjeng, H. J. Lin, C. J. Gutierrez, G. Meigs, and C. T. Chen. "Magnetic structure of Fe/Cr/Fe trilayers." Surface Science 287-288 (May 1993): 741–46. http://dx.doi.org/10.1016/0039-6028(93)91064-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Idzerda, Y. U., L. H. Tjeng, H. J. Lin, C. J. Gutierrez, G. Meigs, and C. T. Chen. "Magnetic structure of Fe/Cr/Fe trilayers." Surface Science Letters 287-288 (May 1993): A415. http://dx.doi.org/10.1016/0167-2584(93)90528-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Yang, Shouxing, Huabing Li, Hao Feng, Xuze Li, Zhouhua Jiang, and Tong He. "Nitrogen Solubility in Liquid Fe–Nb, Fe–Cr–Nb, Fe–Ni–Nb and Fe–Cr–Ni–Nb Alloys." ISIJ International 61, no. 5 (May 15, 2021): 1498–505. http://dx.doi.org/10.2355/isijinternational.isijint-2020-627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Shao, Lin, Di Chen, Chaochen Wei, Michael S. Martin, Xuemei Wang, Youngjoo Park, Ed Dein, et al. "Radiation effects on interface reactions of U/Fe, U/(Fe + Cr), and U/(Fe + Cr + Ni)." Journal of Nuclear Materials 456 (January 2015): 302–10. http://dx.doi.org/10.1016/j.jnucmat.2014.09.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Chen, Zhenhua, Xiangyang Jiang, Yun Wang, Duosan Zhou, Chongliang Qian, Peiyun Huang, Jueming Xiao, and Lijun Wu. "Multicomponent AlCuFeMn, AlCuFeCr and AlCuFeCrMn quasicrystals." Scripta Metallurgica et Materialia 26, no. 2 (January 1992): 291–96. http://dx.doi.org/10.1016/0956-716x(92)90189-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Knabben, D., Th Koop, H. A. Dürr, F. U. Hillebrecht, and G. van der Laan. "Cr magnetic moments in Fe–Cr layered structures." Journal of Electron Spectroscopy and Related Phenomena 86, no. 1-3 (August 1997): 201–7. http://dx.doi.org/10.1016/s0368-2048(97)00066-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Плясова, Л. М., Т. В. Ларина, В. В. Кривенцов, В. И. Зайковский, Е. В. Докучиц, and Т. П. Минюкова. "Влияние соотношения Cr/Fe на структурные особенности Fe–Cr–Cu-содержащих оксидных катализаторов." Кинетика и катализ 56, no. 4 (2015): 499–506. http://dx.doi.org/10.7868/s0453881115030168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Peña Rodríguez, V. A., S. K. Xia, E. Baggio-Saitovitch, and C. Larica. "Comparison of ball milling of Fe/Cr powders and Fe-Cr crystalline alloy." Hyperfine Interactions 83, no. 1 (December 1994): 271–74. http://dx.doi.org/10.1007/bf02074284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Liu, Sha, Yefei Zhou, Xiaolei Xing, Jibo Wang, Yulin Yang, and Qingxiang Yang. "Agglomeration model of (Fe,Cr)7C3 carbide in hypereutectic Fe-Cr-C alloy." Materials Letters 183 (November 2016): 272–76. http://dx.doi.org/10.1016/j.matlet.2016.07.135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Chen, L. H., W. Zhu, T. H. Tiefel, S. Jin, R. B. van Dover, and V. Korenivski. "Fe-Cr-Hf-N and Fe-Cr-Ta-N soft magnetic thin films." IEEE Transactions on Magnetics 33, no. 5 (1997): 3811–13. http://dx.doi.org/10.1109/20.619579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ma, Zhongting, and Dieter Janke. "Activities of carbon and nitrogen in Fe-Cr and Fe-Cr-Ni melts." Steel Research 70, no. 12 (December 1999): 491–95. http://dx.doi.org/10.1002/srin.199905673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

van Schilfgaarde, Mark, Frank Herman, Stuart S. P. Parkin, and Josef Kudrnovský. "Theory of Oscillatory Exchange Coupling in Fe/(V,Cr) and Fe/(Cr,Mn)." Physical Review Letters 74, no. 20 (May 15, 1995): 4063–66. http://dx.doi.org/10.1103/physrevlett.74.4063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Takahashi, Y., and K. Inomata. "Calculation of giant magnetoresistance in Fe/Cr/Fe and Co/Cr/Co sandwiches." IEEE Transactions on Magnetics 29, no. 6 (November 1993): 2723–25. http://dx.doi.org/10.1109/20.280931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hua, Jian, Manjia Chen, Chengshuai Liu, Fangbai Li, Jian Long, Ting Gao, Fei Wu, Jing Lei, and Minghua Gu. "Cr Release from Cr-Substituted Goethite during Aqueous Fe(II)-Induced Recrystallization." Minerals 8, no. 9 (August 24, 2018): 367. http://dx.doi.org/10.3390/min8090367.

Full text
Abstract:
The interaction between aqueous Fe(II) (Fe(II)aq) and iron minerals is an important reaction of the iron cycle, and it plays a critical role in impacting the environmental behavior of heavy metals in soils. Metal substitution into iron (hydr)oxides has been reported to reduce Fe atom exchange rates between Fe(II)aq and metal-substituted iron (hydr)oxides and inhibit the recrystallization of iron (hydr)oxides. However, the environmental behaviors of the substituted metal during these processes remain unclear. In this study, Fe(II)aq-induced recrystallization of Cr-substituted goethite (Cr-goethite) was investigated, along with the sequential release behavior of substituted Cr(III). Results from a stable Fe isotopic tracer and Mössbauer characterization studies show that Fe atom exchange occurred between Fe(II)aq and structural Fe(III) (Fe(III)oxide) in Cr-goethites, during which the Cr-goethites were recrystallized. The Cr substitution inhibited the rates of Fe atom exchange and Cr-goethite recrystallization. During the recrystallization of Cr-goethites induced by Fe(II)aq, Cr(III) was released from Cr-goethite. In addition, Cr-goethites with a higher level of Cr-substituted content released more Cr(III). The highest Fe atom exchange rate and the highest amount of released Cr(III) were observed at a pH of 7.5. Under reaction conditions involving a lower pH of 5.5 or a higher pH of 8.5, there were substantially lower rates of Fe atom exchange and Cr(III) release. This trend of Cr(III) release was similar with changes in Fe atom exchange, suggesting that Cr(III) release is driven by Fe atom exchange. The release and reincorporation of Cr(III) occurred simultaneously during the Fe(II)aq-induced recrystallization of Cr-goethites, especially during the late stage of the observed reactions. Our findings emphasize an important role for Fe(II)aq-induced recrystallization of iron minerals in changing soil metal characteristics, which is critical for the evaluation of soil metal activities, especially those in Fe-rich soils.
APA, Harvard, Vancouver, ISO, and other styles
38

Loudjani, M. K., J. C. Pivin, A. M. Huntz, and J. H. Davidson. "High temperature corrosion of FeNiCr, FeCrAl and FeNiCrAl alloys in controlled H2/H2O/CH4 atmospheres." Corrosion Science 28, no. 11 (January 1988): 1075–88. http://dx.doi.org/10.1016/0010-938x(88)90102-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Stulik, D. "Secondary ion emission from binary Fe-Cr, Fe-Ni, Cr-Ni and ternary Fe-Cr-Ni alloys: Chemical and physical matrix effects." Applied Physics A Solids and Surfaces 42, no. 3 (March 1987): 239–43. http://dx.doi.org/10.1007/bf00620607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Panaccione, Giancarlo, Fausto Sirotti, Elisabetta Narducci, and Giorgio Rossi. "Magnetic interface formation at Cr/Fe(100) and Fe/Cr/Fe(100): Magnetic dichroism in photoemission study." Physical Review B 55, no. 1 (January 1, 1997): 389–96. http://dx.doi.org/10.1103/physrevb.55.389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Rezende, S. M., C. Chesman, M. A. Lucena, M. C. deMoura, A. Azevedo, and F. M. de Aguiar. "Magnetic Multilayers: Interlayer Coupling in Fe/Cr/Fe." Materials Science Forum 302-303 (January 1999): 64–75. http://dx.doi.org/10.4028/www.scientific.net/msf.302-303.64.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Panaccione, G., F. Sirotti, E. Narducci, N. A. Cherepkov, and G. Rossi. "Magnetic interface formation at Fe/Cr/Fe(100)." Surface Science 377-379 (April 1997): 445–49. http://dx.doi.org/10.1016/s0039-6028(96)01443-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ye, FangXia, Chong Wang, and YunHua Xu. "Kinetics of (Fe,Cr)7C3/Fe surface composite." Ferroelectrics 549, no. 1 (September 10, 2019): 145–52. http://dx.doi.org/10.1080/00150193.2019.1592555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ives, A. J. R., J. A. C. Bland, R. J. Hicken, and C. Daboo. "Oscillatory biquadratic coupling in Fe/Cr/Fe(001)." Physical Review B 55, no. 18 (May 1, 1997): 12428–38. http://dx.doi.org/10.1103/physrevb.55.12428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kim, Ki-Yeon, Dong-Hyun Kim, Sung-Chul Shin, and Chun-Yeol You. "Oscillatory magnetic anisotropy in Fe/Cr/Fe trilayers." Journal of Applied Physics 95, no. 11 (June 2004): 6867–69. http://dx.doi.org/10.1063/1.1688641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ustinovshikov, Y., and B. Pushkarev. "Morphology of Fe–Cr alloys." Materials Science and Engineering: A 241, no. 1-2 (January 1998): 159–68. http://dx.doi.org/10.1016/s0921-5093(97)00484-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Рябухина, М. В., Е. А. Кравцов, Д. В. Благодатков, Л. И. Наумова, Ю. В. Никитенко, В. В. Проглядо, and Ю. Н. Хайдуков. "Магнетизм сверхрешеток Fe/Cr/Gd." Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2015, no. 1 (2015): 46–48. http://dx.doi.org/10.7868/s0207352815010163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Lobov, I. D., M. M. Kirillova, A. A. Makhnev, L. N. Romashev, and V. V. Ustinov. "Magnetooptics of Fe/Cr Superlattices." Solid State Phenomena 168-169 (December 2010): 517–20. http://dx.doi.org/10.4028/www.scientific.net/ssp.168-169.517.

Full text
Abstract:
The magnetooptical and optical properties, and giant magnetoresistance (GMR) of MBE-grown Fe(tx, Å)/Cr10 Å (tx=0.3-30 Å) superlattices and nanostructured multilayers are studied. The data obtained are used for characterization of magnetic clusters in structures with ultrathin Fe layers (tFe<6.6 Å) and for estimation of interfacial electron scattering parameters in GMR superlattices.
APA, Harvard, Vancouver, ISO, and other styles
49

Conover, M. J., M. B. Brodsky, J. E. Mattson, C. H. Sowers, and S. D. Bader. "Magnetothermopower of Fe / Cr superlattices." Journal of Magnetism and Magnetic Materials 102, no. 1-2 (December 1991): L5—L8. http://dx.doi.org/10.1016/0304-8853(91)90255-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Petroff, F., A. Barthélémy, A. Hamzić, A. Fert, P. Etienne, S. Lequien, and G. Creuzet. "Magnetoresistance of Fe/Cr superlattices." Journal of Magnetism and Magnetic Materials 93 (February 1991): 95–100. http://dx.doi.org/10.1016/0304-8853(91)90310-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography