Academic literature on the topic 'Femtosecond enhancement cavity'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Femtosecond enhancement cavity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Femtosecond enhancement cavity"

1

Zhang, Jin, Lin-Qiang Hua, Shao-Gang Yu, Zhong Chen, and Xiao-Jun Liu. "Femtosecond enhancement cavity with kilowatt average power." Chinese Physics B 28, no. 4 (April 2019): 044206. http://dx.doi.org/10.1088/1674-1056/28/4/044206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Theuer, M., D. Molter, K. Maki, C. Otani, J. A. L’huillier, and R. Beigang. "Terahertz generation in an actively controlled femtosecond enhancement cavity." Applied Physics Letters 93, no. 4 (July 28, 2008): 041119. http://dx.doi.org/10.1063/1.2966342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Winkler, Georg, Jakob Fellinger, Jozsef Seres, Enikoe Seres, and Thorsten Schumm. "Non-planar femtosecond enhancement cavity for VUV frequency comb applications." Optics Express 24, no. 5 (March 2, 2016): 5253. http://dx.doi.org/10.1364/oe.24.005253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Jin-Wei, Hai-Nian Han, Lei Hou, Long Zhang, Zi-Jiao Yu, De-Hua Li, and Zhi-Yi Wei. "Frequency doubled femtosecond Ti:sapphire laser with an assisted enhancement cavity." Chinese Physics B 25, no. 1 (January 2016): 014205. http://dx.doi.org/10.1088/1674-1056/25/1/014205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

BUHLEIER, R., J. H. COLLET, V. BARDINAL, C. FONTAINE, R. LEGROS, M. HÜBNER, and J. KUHL. "ENHANCED FOUR-WAVE MIXING DIFFRACTION EFFICIENCY IN BULK GaAs MICROCAVITIES AT ROOM TEMPERATURE." Journal of Nonlinear Optical Physics & Materials 05, no. 04 (October 1996): 637–44. http://dx.doi.org/10.1142/s0218863596000465.

Full text
Abstract:
We present investigations on Degenerate Four Wave Mixing in bulk GaAs Fabry-Pérot microcavities at room temperature excited with femtosecond pulses. Due to increased interaction length and amplification of light fields in the cavity, the measured diffraction efficiency η≈2×10−3 at 878 nm is enhanced by a factor of roughly 30 compared to bulk GaAs without cavity. The results may be useful for exploiting the cavity enhancement effect for investigation of carrier kinetics at small excitation densities. For application purposes, the results renew the interest in ultrafast coherent deflectors for all-optical routing.
APA, Harvard, Vancouver, ISO, and other styles
6

Weitenberg, Johannes, Peter Rußbüldt, Tino Eidam, and Ioachim Pupeza. "Transverse mode tailoring in a quasi-imaging high-finesse femtosecond enhancement cavity." Optics Express 19, no. 10 (May 2, 2011): 9551. http://dx.doi.org/10.1364/oe.19.009551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bernhardt, Birgitta, Akira Ozawa, Andreas Vernaleken, Ioachim Pupeza, Jan Kaster, Yohei Kobayashi, Ronald Holzwarth, et al. "Vacuum ultraviolet frequency combs generated by a femtosecond enhancement cavity in the visible." Optics Letters 37, no. 4 (February 6, 2012): 503. http://dx.doi.org/10.1364/ol.37.000503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Barnes, Michael D., William B. Whitten, and J. Michael Ramsey. "Probing femtosecond dynamics in solution on a picosecond time scale. Cavity enhancement of spontaneous emission rates in microdroplets." Chemical Physics Letters 227, no. 6 (September 1994): 628–32. http://dx.doi.org/10.1016/0009-2614(94)00872-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Seres, J., E. Seres, C. Serrat, E. C. Young, J. S. Speck, and T. Schumm. "All-solid-state VUV frequency comb at 160 nm using high-harmonic generation in nonlinear femtosecond enhancement cavity." Optics Express 27, no. 5 (February 21, 2019): 6618. http://dx.doi.org/10.1364/oe.27.006618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hammond, T. J., Arthur K. Mills, and David J. Jones. "Near-threshold harmonics from a femtosecond enhancement cavity-based EUV source: effects of multiple quantum pathways on spatial profile and yield." Optics Express 19, no. 25 (November 21, 2011): 24871. http://dx.doi.org/10.1364/oe.19.024871.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Femtosecond enhancement cavity"

1

Lee, Jane. "Generation of VUV frequency combs in femtosecond enhancement cavity." Diss., The University of Arizona, 2010. http://hdl.handle.net/10150/145735.

Full text
Abstract:
This dissertation is on the development of a laser system for the generation of femtosecond frequency combs in the vacuum-ultraviolet (VUV) via intracavity high-harmonic generation (HHG). The HHG process yields coherent vacuum ultraviolet (VUV) light resulting from the ionization of noble gases driven by intense near-IR femtosecond frequency combs in an optical enhancement cavity. An injection locked amplification cavity (fsAC) was developed in order to generate a high power femtosecond frequency combs based on a Ti:Sapphire oscillator. Detailed amplifier performance was investigated in order to evaluate the coherence of the pulse amplification process. A passive power enhancement cavity for fs pulses (fsEC) was designed for intracavity high harmonic generation. For maximum power enhancement and conversion efficiency, the intracavity dispersion was compensated and various design layouts tested. A careful analysis of the phase matching conditions was performed, taking into account the effect of reabsorption of the generated high harmonic light, to compare different cavity geometries and determine which would produce the most efficient harmonic yield. Numerical simulations were also performed to determine the level of intra-cavity ionization that could be sustained before disrupting the pulse enhancement process. Based on the results of these simulations and calculations, it was determined that for a xenon gas target, a moderate peak intensity of the order of ~ 5×10¹³W/cm² produces harmonics most efficiently.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Femtosecond enhancement cavity"

1

Ye, Jun, R. Jason Jones, Michael J. Thorpe, Kevin D. Moll, Dylan Yost, Thomas Schibli, and Darren D. Hudson. "Femtosecond enhancement cavity — direct frequency comb spectroscopy and coherent extreme nonlinear optics." In Ultrafast Phenomena XV, 121–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68781-8_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jason Jones, R., Kevin Moll, Michael Thorpe, and Jun Ye. "High-harmonic Generation at 100 MHz Repetition Frequency using a Femtosecond Enhancement Cavity." In Springer Series in Optical Sciences, 59–64. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-49119-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Femtosecond enhancement cavity"

1

Mills, Arthur K., T. J. Hammond, Rob Stead, and David J. Jones. "Low Noise EUV Generation via a Femtosecond Enhancement Cavity." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/cleo.2010.cmd2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lam, Matthew H. C., Arthur K. Mills, Egor Chasovskikh, and David J. Jones. "Femtosecond Enhancement Cavity EUV Source with High Energy Resolution." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/cleo_si.2012.cf1c.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jacob, Gregory, David Carlson, Tsung-Han Wu, R. Jason Jones, and Ewan M. Wright. "Numerical simulations of enhancement cavity dynamics driven by femtosecond frequency combs." In Frontiers in Optics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/fio.2014.jtu3a.22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pupeza, I., T. Eidam, B. Bernhardt, A. Ozawa, J. Rauschenberger, E. Fill, A. Apolonski, et al. "Power Scaling of a 78 MHz-Repetition Rate Femtosecond Enhancement Cavity." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/cleo.2010.ctha6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Castro-Olvera, Gustavo, Jesus Garduño-Mejía, Martha Rosete-Aguilar, and Carlos J. Roman-Moreno. "Mode coupling enhancement by astigmatism compensation in a femtosecond laser cavity." In SPIE Optical Engineering + Applications, edited by Andrew Forbes and Todd E. Lizotte. SPIE, 2016. http://dx.doi.org/10.1117/12.2237896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mills, Arthur K., Sergey Zhdanovich, Alex Sheyerman, Giorgo Levy, Andrea Damascelli, and David J. Jones. "An XUV source using a femtosecond enhancement cavity for photoemission spectroscopy." In SPIE Optics + Optoelectronics, edited by Sandra G. Biedron. SPIE, 2015. http://dx.doi.org/10.1117/12.2184547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mills, Arthur K., Sergey Zhdanovich, Fabio Boschini, MengXing Na, M. Schneider, P. Dosanjh, D. Wong, Giorgio Levy, Andrea Damascelli, and David J. Jones. "Time-resolved Femtosecond Photoemission Spectroscopy using a 60-MHz Enhancement Cavity XUV Source." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_si.2017.stu1i.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pupeza, I., T. Eidam, O. Pronin, J. Rauschenberger, B. Bernhardt, A. Ozawa, Th Udem, et al. "Femtosecond High Repetition Rate External Cavity Beyond The Average Power Limit for Linear Enhancement." In Advanced Solid-State Photonics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/assp.2010.awc6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hartl, I., M. E. Fermann, T. R. Schibli, D. D. Hudson, M. J. Thorpe, R. J. Jones, and J. Ye. "Passive cavity enhancement of a femtosecond fiber chirped pulse amplification system to 204W average power." In Advanced Solid-State Photonics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/assp.2007.wa4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Carlson, David R., Tsung-Han Wu, and R. Jason Jones. "Dual-comb femtosecond enhancement cavity for precision measurements of plasma dynamics and spectroscopy in the XUV." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_si.2015.sw3g.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography