Academic literature on the topic 'Fermat's equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fermat's equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fermat's equation"
Dolan, Stan. "Pell's equation and Fermat." Mathematical Gazette 96, no. 535 (March 2012): 66–70. http://dx.doi.org/10.1017/s0025557200003971.
Full textDem'yanenko, V. A. "ELLIPTIC FUNCTIONS AND FERMAT'S EQUATION." Russian Academy of Sciences. Sbornik Mathematics 77, no. 1 (February 28, 1994): 11–23. http://dx.doi.org/10.1070/sm1994v077n01abeh003426.
Full textZhong, Cui-Xiang. "On Fermat's equation with prime power exponents." Acta Arithmetica 59, no. 1 (1991): 83–86. http://dx.doi.org/10.4064/aa-59-1-83-86.
Full textCohn, J. H. E. "The Diophantine equation x2+3 = yn." Glasgow Mathematical Journal 35, no. 2 (May 1993): 203–6. http://dx.doi.org/10.1017/s0017089500009757.
Full textKolyvagin, V. A. "Fermat's equation over the tower of cyclotomic fields." Izvestiya: Mathematics 65, no. 3 (June 30, 2001): 503–41. http://dx.doi.org/10.1070/im2001v065n03abeh000337.
Full textLe, Maouha, and Ching Li. "On Fermat's equation in integral 2×2 matrices." Periodica Mathematica Hungarica 31, no. 3 (December 1995): 219–22. http://dx.doi.org/10.1007/bf01882197.
Full textEynden, Charles Vanden. "Fermat's Last Theorem: 1637—1988." Mathematics Teacher 82, no. 8 (November 1989): 637–40. http://dx.doi.org/10.5951/mt.82.8.0637.
Full textJoseph, James E. "ALGEBRAIC PROOFS FERMAT'S LAST THEOREM, BEAL'S CONJECTURE." JOURNAL OF ADVANCES IN MATHEMATICS 12, no. 9 (September 27, 2016): 6576–77. http://dx.doi.org/10.24297/jam.v12i9.130.
Full textRibenboim, Paulo. "Fermat's equation for matrices or quaternions over q-adic fields." Acta Arithmetica 113, no. 3 (2004): 241–50. http://dx.doi.org/10.4064/aa113-3-2.
Full textMestechkin, M. "On periodic continued fractions, Pell equation, and Fermat's challenge numbers." Journal of Computational Methods in Sciences and Engineering 10, no. 1-2 (November 19, 2010): 49–66. http://dx.doi.org/10.3233/jcm-2010-0261.
Full textDissertations / Theses on the topic "Fermat's equation"
Esmonde, Jody. "Parametric solutions to the generalized Fermat equation." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0027/MQ50765.pdf.
Full textMeekin, Paul. "The Fermat equation over totally real fields." Thesis, University of Sheffield, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.397498.
Full textDeconinck, Heline. "The generalized Fermat equation over totally real number fields." Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/81893/.
Full textSoto, Ballesteros Eduardo. "New results on modular forms and Fermat-type equations." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/667974.
Full textBarroso, de Freitas Nuno Ricardo. "Some Generalized Fermat-type Equations via Q-Curves and Modularity." Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/91288.
Full textEn esta tesis, utilizaremos el método modular para profundizar en el estudio de las ecuaciones de tipo (r; r; p) para r un primo fijado. Empezamos por utilizar la teoría de J. Quer sobre variedades abelianas asociadas con Q-curvas y embedding problems para producir dos curvas de Frey asociadas con hipotéticas soluciones de infinitas ecuaciones de tipo (5; 5; p). Después, utilizando la conjetura de Serre y el método multi-Frey de Siksek demostraremos que las hipotéticas soluciones no pueden existir. Describiremos también un método general que nos permite atacar un número infinito de ecuaciones de tipo (r; r; p) para cada primo “r” mayor o igual que 7. El método hace uso de curvas elípticas sobre cuerpos de números, teoremas de modularidad, teoremas de bajada de nivel y formas modulares de Hilbert. Además, para ecuaciones de tipo (7; 7; p) y (13; 13; p) calcularemos los espacios de formas modulares relevantes y demostraremos que una familia infinita de ecuaciones no admite cierto tipo de soluciones. Además, demostraremos un nuevo teorema de modularidad para curvas elípticas sobre cuerpos totalmente reales abelianos. Finalmente, para primos congruentes con 1 módulo 4 propondremos dos curvas de Frey más. Demostraremos que son “k-curves” (una generalización de Q-curva) y también que satisfacen las propiedades necesarias para que pueda ser útiles en la aplicación del método modular.
Silva, Filardes de Jesus Freitas da. "Equações diofantinas classicas e aplicações." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307049.
Full textDissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-13T21:19:45Z (GMT). No. of bitstreams: 1 Silva_FilardesdeJesusFreitasda_M.pdf: 678989 bytes, checksum: 49b0b13ce88d8aa64141c17e237d85fe (MD5) Previous issue date: 2009
Resumo: Neste trabalho focalizamos os principais conceitos da teoria elementar dos números objetivando uma melhor compreensão das Equações Diofantinas Clássicas e suas aplicações e para isto explicitamos os conceitos de Números primos, Algoritmo de Euclides, Máximo divisor comum e Mínimo múltiplo comum, assim como a teoria das Congruências, uma abordagem sobre a Criptografica RSA e Soma de Inteiros. Palavras-Chave: Congruências Lineares, Soma de Inteiros, Equação de Fermat, Soma de Quadrados
Abstract: In this work we focus the main concepts of the elementary theory of numbers seeking a better understanding of Classical diophantine equations and their applications for this and explained the concepts of prime numbers, algorithms of Euclid, maximum common divisor and least common multiple and the theory of congruence , an approach on the RSA encryption and Sum of Integers. Keywords: Linear congruence, Sum of Integers, equation of Fermat, Sum of Squares
Mestrado
Teoria dos Numeros
Mestre em Matemática
Alves, Lucinda Freese. "Aplicações de equações Diofantinas e um passeio pelo último teorema de Fermat." Universidade Federal de Goiás, 2017. http://repositorio.bc.ufg.br/tede/handle/tede/8104.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-01-15T11:36:54Z (GMT) No. of bitstreams: 2 Dissertação - Lucinda Freese Alves - 2017.pdf: 5609089 bytes, checksum: 7a1e669b3bb3ff704b41db22d3e36a4f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2018-01-15T11:36:54Z (GMT). No. of bitstreams: 2 Dissertação - Lucinda Freese Alves - 2017.pdf: 5609089 bytes, checksum: 7a1e669b3bb3ff704b41db22d3e36a4f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-12-20
The presente work aims to help students, teachers and lovers of mathematics, to better understand, interpret and solve problems that can be solved through Diophantine Equations. In this way, we present some basic concepts about Diophantine Equations as well as some practical applications. We also discuss Fermat ́s Last Theorem for the cases of n=2, n=3 and n=4, aiming to arouse interest, on the students, in Number Theory.
O presente trabalho tem como objetivo auxiliar estudantes, professores e apaixonados pela matemática, a melhor compreender, interpretar e resolver problemas que possam ser solucionados através das Equações Diofantinas. Desta forma, apresentamos alguns conceitos básicos sobre Equações Diofantinas bem como algumas aplicações práticas. Discutimos ainda, o Último Teorema de Fermat para os casos de n=2, n=3 e n=4, visando despertar o interesse no aluno pela teoria dos números.
Nascimento, NatÃlia Medeiros do. "EquaÃÃes diofantinas e o mÃtodo das secantes e tangentes de Fermat." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12409.
Full textAo longo das Ãltimas dÃcadas, a transmissÃo do conhecimento matemÃtico na EducaÃÃo BÃsica sofreu diversas mudanÃas. âO Ensino Tradicionalâ da matemÃtica era baseado na memorizaÃÃo de fÃrmulas, havendo assim uma mecanizaÃÃo no processo de resoluÃÃo de problemas, onde o discente era visto como um ser passivo. A nova visÃo de ensino, que busca significar o que conteÃdo exposto em sala, motivou a escolha desse tema, visto que situaÃÃes problemas envolvendo equaÃÃes diofantinas podem ser facilmente percebidas em nosso cotidiano. O objetivo deste trabalho à oportunizar a realizaÃÃo de uma leitura consultiva para o professor do Ensino BÃsico, e asseverar que essas equaÃÃes podem ser aplicadas na EducaÃÃo BÃsica como uma ferramenta que instiga o pensamento lÃgico, o raciocÃnio, a compreensÃo e a interpretaÃÃo matemÃtica. A formulaÃÃo desse material que està dividido em cinco capÃtulos se deu atravÃs de levantamento bibliogrÃfico por meio de pesquisas descritivas. A introduÃÃo compÃe o primeiro capÃtulo. O segundo capÃtulo versa sobre o Legado de Diofanto: vida e obras, ressaltando sua obra titulada âArithmeticaâ que contribuiu significativamente para o desenvolvimento da teoria dos nÃmeros. O terceiro capÃtulo trata das equaÃÃes diofantinas lineares de n variÃveis. O quarto capÃtulo aborda as ternas itagÃricas, o MÃtodo das Secantes e Tangentes de Fermat na busca de soluÃÃes racionais para quaÃÃes, com coeficientes racionais, da forma ax2+by2 = c, e um caso particular do Ãltimo Teorema de Fermat. O quinto capÃtulo à composto de problemas sobre equaÃÃes diofantinas lineares.
Over the past decades, the transmission of mathematical knowledge in basic education has undergone several changes. The âTeaching Traditionalâ math was based on memorizing formulas, so there mechanization in problem solving where the student was seen as a liability to be process. The new vision of education that seeks to signify exposed to room content, motivated the choice of this theme, as diophantine equations involving situations problems can be easily noticed in our daily lives. The objective of this work is an opportunity for a realization of an advisory reading for the teacher of basic education, and assert that these equations can be applied in basic education as a tool that encourages the logical thinking, reasoning, understanding and mathematical interpretation. The formulation of this material which is divided into five chapters was through literature review through descriptive research. The introduction comprises the first chapter. The second chapter deals with the Legacy of Diophantus: life and works, emphasizing his work entitled âArithmeticaâ which contributed significantly to the development of number theory. The third chapter deals with linear Diophantine equations in n variables. The fourth chapter discusses the Pythagorean tender, Fermatâs of secants and Tangents method, in finding rational solutions to equations with rational coefficients, of the form ax2 + by2 = c and a particular case Fermatâs Last Theorem. The fifth chapter is composed of problems on linear diophantine equations.
Melo, Rômulo de Oliveira Lins Vieira de. "O método de circulantes, as fórmulas de Cardano e o teorema de Fermat para n=3." Universidade Federal da Paraíba, 2017. http://tede.biblioteca.ufpb.br:8080/handle/tede/9835.
Full textMade available in DSpace on 2018-05-02T18:31:29Z (GMT). No. of bitstreams: 1 Arquivototal.pdf: 790723 bytes, checksum: 7e439258b05733c014dcd3e7de230c1f (MD5) Previous issue date: 2017-08-31
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this present work, principles and theorems associated to integers are returned, as well as eigenvalues and eigenvectors problems, highlighting a Hermitian matrix. Then it is emphasized to the Circulating Matrices, through which it is found the association to two well-defined polynomials: the representative and the characteristic. Later a brief account about the history of polynomial equations is made, drafting the Cardano-Tartaglia Formulas associated to them. Afterwards a unification is made in the resolution process of the polynomial equations of smaller degrees than the equal to 4, by means of the circulating matrices. The work is completed by proving a Fermat theorem for n = 3, using the Cardano-Tartaglia Formulas.
No presente trabalho, princípios e teoremas associados aos números inteiros são retomados, bem como problemas de autovalores e autovetores, sendo ressaltada a matriz Hermitiana. Em seguida é dado ênfase às Matrizes Circulantes, através das quais verifica-se a associação a dois polinômios bem definidos: o representante e o característico. Posteriormente realiza-se um breve relato acerca da história das equações polinomiais, destacandose as Fórmulas de Cardano-Tartaglia associadas às mesmas. Logo após é feita uma unificação no processo de resolução das equações polinomiais de graus menores do que o igual a 4, por meio das matrizes circulantes. O trabalho é finalizado, sendo provado o Teorema de Fermat para n = 3, recorrendo-se às Fórmulas de Cardano-Tartaglia.
CAMPOS, Danilo Albuquerque de. "Algoritmos de aproximação de raízes quadradas." Universidade Federal Rural de Pernambuco, 2014. http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6699.
Full textMade available in DSpace on 2017-03-28T15:03:55Z (GMT). No. of bitstreams: 1 Danilo Albuquerque de Campos.pdf: 453917 bytes, checksum: 1b07ec11128857b2e96af37543e335fe (MD5) Previous issue date: 2014-08-22
In this work we are interested in showing three algorithms rational approximation of square roots by methods unknown or underutilized by teachers of elementary and secondary education. We begin by defining numerical sequence and convergence of sequences, will discuss the need to expand the concept of rational number and demonstrate the irrationality of the diagonal of a square. Prove an important theorem known in the literature as Dirichlet’s theorem and finally elencaremos three methods of approximating the square roots of natural non-perfect square numbers, very simple to be worked on in the classroom that are rational algorithm aproximção of Hiero of Alexandria, Theon’s Ladder and the Pell-Fermat equation, sende latter discursão fundamental to who will perform on the relationship of the three methods presented.
Neste trabalho estamos interessados em mostrar três algoritmos de aproximação racional de raízes quadradas por métodos pouco utilizados ou desconhecidos pelos professores do ensino fundamental e médio. Iniciaremos definindo sequência numérica e convergência de sequências, discutiremos sobre a necessidade de ampliação do conceito de número racional e demonstraremos a irracionalidade da diagonal de um quadrado. Provaremos um importante Teorema conhecido na literatura como o Teorema de Dirichlet, e por fim elencaremos três métodos de aproximação de raízes quadradas de números naturais não quadrados perfeitos, muito simples de serem trabalhados em sala de aula que são: O algoritmo de aproximação racional de Hierão de Alexandria, A escada de Theon e a Equação de Pell-Fermat, sendo este último fundamental para discussão que iremos realizar sobre a relação dos três métodos apresentados.
Books on the topic "Fermat's equation"
Fermat's last theorem. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textInkeri, Kustaa. Collected papers of Kustaa Inkeri. Edited by Metsänkylä Tauno and Ribenboim Paulo. Kingston, Ont: Queen's University, 1992.
Find full textForms of Fermat equations and their zeta functions. Singapore: World Scientific, 2005.
Find full textTauno, Metsänkylä, and Ribenboim Paulo, eds. Collected papers of Kustaa Inkeri. Kingston, Ont: Queens's University, 1992.
Find full textApiosi︠a︡n, Levon Anik. Elementaren podkhod pri reshavane na vid neopredeleni uravnenii︠a︡ v t︠s︡eli chisla: Nauchno izsledvane s prakticheska nasochenost, pomagalo po matematika za naprednali. Plovdiv: Narodna biblioteka "Ivan Vazov", 2011.
Find full textGhandehari, Mostafa. Ray optics on surfaces. Arlington: Dept. of Mathematics, University of Texas at Arlington, 1997.
Find full textSeries, Michigan Historical Reprint. Proof of Fermat's theorem, and McGinnis' theorem of derivative equations in an absolute proof of Fermat's theorem; reduction of the general equation of ... supplementary theorems, by Michael Angelo Mc. Scholarly Publishing Office, University of Michigan Library, 2005.
Find full textCoopersmith, Jennifer. The Lazy Universe. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198743040.001.0001.
Full textBrunjes, Lars. Forms Of Fermat Equations And Their Zeta Functions. World Scientific Publishing Company, 2004.
Find full textPerlick, Volker. Ray Optics, Fermat's Principle, and Applications to General Relativity. Springer, 2000.
Find full textBook chapters on the topic "Fermat's equation"
Bennett, Michael, Preda Mihăilescu, and Samir Siksek. "The Generalized Fermat Equation." In Open Problems in Mathematics, 173–205. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32162-2_3.
Full textHarborth, Heiko. "Fermat-Like Binomial Equations." In Applications of Fibonacci Numbers, 1–5. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-015-7801-1_1.
Full textKřížek, Michal, Florian Luca, and Lawrence Somer. "Fermat Primes and a Diophantine Equation." In 17 Lectures on Fermat Numbers, 117–29. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-0-387-21850-2_11.
Full textJarvis, Frazer. "Cyclotomic Fields and the Fermat Equation." In Springer Undergraduate Mathematics Series, 191–206. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07545-7_9.
Full textFrey, Gerhard. "On Ternary Equations of Fermat Type and Relations with Elliptic Curves." In Modular Forms and Fermat’s Last Theorem, 527–48. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1974-3_20.
Full textDarmon, Henri, and Claude Levesque. "Infinite Sums, Diophantine Equations and Fermat’s Last Theorem." In Developments in Mathematics, 73–95. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3675-5_6.
Full textPethó, A., E. Herrmann, and H. G. Zimmer. "S-integral points on elliptic curves and Fermat's triple equations." In Lecture Notes in Computer Science, 528–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0054890.
Full textLi, Bao Qin. "On Fermat-Type Functional and Partial Differential Equations." In The Mathematical Legacy of Leon Ehrenpreis, 209–22. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-1947-8_13.
Full textHerrin, Judith. "Mathematical Mysteries in Byzantium." In Margins and Metropolis. Princeton University Press, 2013. http://dx.doi.org/10.23943/princeton/9780691153018.003.0015.
Full textWilson, Robin. "5. More triangles and squares." In Number Theory: A Very Short Introduction, 79–96. Oxford University Press, 2020. http://dx.doi.org/10.1093/actrade/9780198798095.003.0005.
Full textConference papers on the topic "Fermat's equation"
Jua´rez-Robles, D., A. Herna´ndez-Guerrero, C. E. Damia´n-Ascencio, and C. Rubio-Arana. "Three Dimensional Analysis of a PEM Fuel Cell With the Shape of a Fermat Spiral for the Flow Channel Configuration." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68101.
Full text