Academic literature on the topic 'Ferrites spinel'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ferrites spinel.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ferrites spinel"
Wang, Wen Jie, Qing Jie Jiao, Chong Guang Zang, and Xiang Dong Zhu. "Study on the Absorption Properties of Spinel Type Ferrite Composite Coatings in the Low Frequency." Advanced Materials Research 415-417 (December 2011): 30–34. http://dx.doi.org/10.4028/www.scientific.net/amr.415-417.30.
Full textGao, Fen, Dong Lin Zhao, and Zeng Min Shen. "Preparation and Microwave Absorbing Properties of Cu-Doped Ni-Zn Spinel Ferrites." Advanced Materials Research 105-106 (April 2010): 293–96. http://dx.doi.org/10.4028/www.scientific.net/amr.105-106.293.
Full textSláma, Jozef, Martin Šoka, Anna Grusková, Alvaro Gonzalez, and Vladimír Jančárik. "Hopkinson Effect Study in Spinel and Hexagonal Ferrites." Journal of Electrical Engineering 62, no. 4 (July 1, 2011): 239–43. http://dx.doi.org/10.2478/v10187-011-0038-7.
Full textGalvão, Wesley S., Davino M. A. Neto, Rafael M. Freire, and P. B. A. Fechine. "Super-Paramagnetic Nanoparticles with Spinel Structure: A Review of Synthesis and Biomedical Applications." Solid State Phenomena 241 (October 2015): 139–76. http://dx.doi.org/10.4028/www.scientific.net/ssp.241.139.
Full textKodama, T., H. Kato, S. G. Chang, N. Hasegawa, M. Tsuji, and Y. Tamaura. "Decomposition of CO2 to carbon by H2-reduced Ni(II)- and Co(II)-bearing ferrites at 300 °C." Journal of Materials Research 9, no. 2 (February 1994): 462–67. http://dx.doi.org/10.1557/jmr.1994.0462.
Full textAstik, Nidhi M., and G. J. Baldha. "Investigation of Structural, Electrical and Magnetic Properties of Mixed Ferrite System." Advanced Materials Research 1047 (October 2014): 119–22. http://dx.doi.org/10.4028/www.scientific.net/amr.1047.119.
Full textIacovita, Cristian, Gabriela Fabiola Stiufiuc, Roxana Dudric, Nicoleta Vedeanu, Romulus Tetean, Rares Ionut Stiufiuc, and Constantin Mihai Lucaciu. "Saturation of Specific Absorption Rate for Soft and Hard Spinel Ferrite Nanoparticles Synthesized by Polyol Process." Magnetochemistry 6, no. 2 (May 29, 2020): 23. http://dx.doi.org/10.3390/magnetochemistry6020023.
Full textSeyyed Ebrahimi, S. A., and Z. Pishgahi Fard. "An Investigation on the Optimum Conditions for Preparation of Pure Mn-Mg-Zn Ferrite Powder." Key Engineering Materials 336-338 (April 2007): 699–702. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.699.
Full textUšáková, Mariana, Elemír Ušák, Martin Šoka, and Ján Lokaj. "The influence of selected ions on various characteristics of Nickel-Zinc ferrites." Journal of Electrical Engineering 69, no. 6 (December 1, 2018): 449–53. http://dx.doi.org/10.2478/jee-2018-0072.
Full textRen, Gui Hua, and Zhi Song Yu. "Synthesis of Monodisperse Fe3O4 and MnFe2O4 Nanospheres by Using a Solvothermal Reduction Method." Solid State Phenomena 181-182 (November 2011): 393–96. http://dx.doi.org/10.4028/www.scientific.net/ssp.181-182.393.
Full textDissertations / Theses on the topic "Ferrites spinel"
Phillips, Peter John. "Conduction processes in spinel ferrites." Thesis, University of Warwick, 1991. http://wrap.warwick.ac.uk/108772/.
Full textPrice, Sean. "Critical and magnetic behaviour of some spinel ferrites." Thesis, University of Portsmouth, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304578.
Full textVestal, Christy Riann. "Magnetic couplings and superparamagnetic properties of spinel ferrite nanoparticles." Diss., Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-06072004-131405/unrestricted/vestal%5Fchristy%5Fr%5F200405%5Fphd.pdf.
Full textSong, Qing. "Size and Shape Controlled Synthesis and Superparamagnetic Properties of Spinel Ferrites Nanocrystals." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7645.
Full textBonholzer, Michael. "Magnetic Tunnel Junctions based on spinel ZnxFe3-xO4." Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-212756.
Full textHan, Man Huon. "Development of synthesis method for spinel ferrite magnetic nanoparticle and its superparamagnetic properties." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26465.
Full textCommittee Chair: Z. John Zhang; Committee Member: Angus Wilkinson; Committee Member: C P Wong; Committee Member: E. Kent Barefield; Committee Member: Mostafa El-Sayed. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Mercier, Adrien. "Contribution à l'étude et à la réalisation de composants magnétiques monolithiques réalisés par PECS/SPS et à leurs applications en électronique de puissance." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLN057/document.
Full textThe increase in switching frequency of power supply induces new problems for the components. These components are active or passive, it is necessary to control the losses so that efficiency remains acceptable. The thesis deals with the study and production of a new transformer structure intended to be part of a switching power supply. These transformers are produced using PECS/SPS method, which is a sintering technology. This technology can be sintered ferrite around the primary and secondary windings. It follows that the components are monolithic.A first part presents the state of the art, and magnetism in the matter. It follows a chapter dedicated to the manufacture of magnetic materials used in the thesis : the ferrites.A second part concerns the ferrites produced by the PECS / SPS process. Firstly, the magnetocrystalline anisotropy of these materials is studied, and it is possible to decrease it by varying the chemical composition. In a second stage, other variables such as the permeability or the polarization are measured, always depending on the chemical composition. The main results show that the sintering by PECS / SPS method is more reducing than conventional sintering, which degrades certain properties such as the resistivity of the ferrites. The last chapter is dedicated to the realization of monolithic processors. A detailed manufacturing protocol is presented.A third part shows the operation of the realized transformers. The usual measurements allow identifying self, mutual and leakage inductances. The values of these inductances show that it is better to use components made not as a transformer, but as a coupler. Finally a converter based on a VRM structure is realized. The switching frequency is 2 MHz, the efficiency is greater than 90%, and the power density is 15 kW / liter
Moura, Alysson Elson Galv?o de. "S?ntese, sinteriza??o e caracteriza??o de ferritas ? base de Ni-Zn." Universidade Federal do Rio Grande do Norte, 2008. http://repositorio.ufrn.br:8080/jspui/handle/123456789/17599.
Full textConselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico
Were synthesized different ferrites NixZn1-xFe2O4 (0,4 ≤ x ≤ 0,6) compositions by using citrate precursor method. Initially, the precursors citrates of iron, nickel and zinc were mixed and homogenized. The stoichiometric compositions were calcined at 350?C without atmosphere control and the calcined powders were pressed in pellets and toroids. The pressed material was sintered from 1100? up to 1200?C in argon atmosphere. The calcined powders were characterized by XRD, TGA/DTG, FTIR, SEM and vibrating sample magnetometer (VSM). All sintered samples were characterized using XRD, SEM, VSM and measurements of magnetic permeability and loss factor were obtained. It was formed pure ferromagnetic phase at all used temperatures. The Rietveld analyses allowed to calculate the cations level occupation and the crystallite size. The analyses obtained nanometric crystals (12-20 nm) to the calcined powder. By SEM, the sintered samples shows grains sizes from 1 to 10 μm. Sintered densities (ρ) were measured by the Archimedes method and with increasing Zn content, the bulk density decrease. The better magnetization results (105-110 emu/g) were obtained for x=0,6 at all sintering temperatures. The hysteresis shows characteristics of soft magnetic material. Two magnetization processes were considered, superparamagnetism at low temperature and the magnetic domains formation at high temperatures. The sintered toroids presents relative magnetic permeability (μr) from 7 to 32 and loss factor (tanδ) of about 1. The frequency response of toroids range from 0,3 kHz to 0,2 GHz. The composition x=0,5 presents both greater μr and tanδ values and x=0,6 the most broad range of frequency response. Various microstructural factors show influence on the behavior of μr and tanδ, such as: grain size, porosity across grain boundary and inside the grain, grain boundary content and domain walls movement during the process of magnetization at high frequency studies (0,3kKz 0,2 GHz)
Foram sintetizadas diferentes composi??es da ferrita Ni1-xZnxFe2O4 com 0,4 ≤ x ≤ 0,6 pelo uso do m?todo dos citratos precursores. Para se obter a fase estequiom?trica do sistema Ni1-xZnxFe2O4 foram misturados e homogeneizados os citratos precursores de ferro, n?quel e zinco. As composi??es estequiom?tricas foram calcinadas em atmosfera ambiente na temperatura de 350?C e depois prensadas em pastilhas e tor?ides. As amostras prensadas foram sinterizadas nas temperaturas de 1100?, 1150? e 1200?C em atmosfera de arg?nio. Os p?s calcinados foram caracterizados por DRX, TGA/DTG, FTIR, MEV e magnetometria de amostra vibrante (MAV) e as amostras sinterizadas por DRX, MEV, MAV, massa espec?fica e medidas de permeabilidade e perdas magn?ticas. Observou-se a forma??o de fase pura ferrimagn?tica em todas as temperaturas aplicadas. A an?lise pelo m?todo de Rietveld calculou o n?vel de ocupa??o dos c?tions e o tamanho de cristalito. Foram obtidos tamanhos de cristais nanom?tricos, de 12 a 20 nm para os p?s calcinados. Por MEV, as amostras sinterizadas apresentam tamanhos de gr?os na faixa de 1 a 10 μm. A massa espec?fica (ρ) do material sinterizado apresenta uma tend?ncia de diminui??o com a adi??o de Zn. Os melhores resultados de magnetiza??o foram obtidos para x=0,6 nas tr?s temperaturas de sinteriza??o, variando de 105 a 110 emu/g. As histereses mostram um perfil de materiais magn?ticos moles. Dois processos de magnetiza??o foram considerados, o superparamagnetismo a baixa temperatura (350?C) e a forma??o de dom?nios magn?ticos em altas temperaturas. Os materiais sinterizados apresentam permeabilidade (μ) de algumas unidades, de 7 a 30, e perdas magn?ticas (tanδ) por volta de 1. A resposta em freq??ncia dos n?cleos toroidais est? na faixa de 0,3 kHz a 0,2 GHz. Os maiores valores de μ e tanδ s?o para x=0,5 e a maior faixa de resposta em freq??ncia ? para x=0,6. V?rios fatores da microestrutura contribuem para o comportamento das grandezas μ e tanδ, tais como: os tamanhos dos gr?os, porosidade inter e intragranular, quantidade de contornos de gr?os e os aspectos da din?mica das paredes de dom?nios quando excitadas magneticamente sob alta freq??ncia
Scarberry, Kenneth Edward. "Biomedical applications of cobalt-spinel ferrite nanoparticles for cancer cell extraction and drug delivery." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/33951.
Full textMarija, Milanović. "Sinteza i karakterizacija nanočestičnih prahova na bazi cink-ferita." Phd thesis, Univerzitet u Novom Sadu, Tehnološki fakultet Novi Sad, 2010. https://www.cris.uns.ac.rs/record.jsf?recordId=82019&source=NDLTD&language=en.
Full textThis thesis presents the results of the investigation of the structural and magnetic properties of nanostructured zinc ferrites, ZnFe2O4 and zinc ferrites supstituted with different amount of indium and yttrium, Zn1-xInxFe2O4 and ZnYxFe2-xO4 (0 ≤ x ≤ 0,6). Powders based on zinc ferrites were synthesised by a low temperature wet-chemical method – coprecipitation. The main purpose of this thesis was to establish the relationship between the synthesis, dopants, structure and properties of zinc ferrite based materials. Nanoparticles of ZnFe2O4 were calcined at different temperatures in order to elucidate the influence of the particle size on the magnetic properties of the obtained nanoparticles. In addition, we have investigated the effect of dopant addition on cation distribution in spinel structure, in order to modify the magnetic properties and to obtain the magnetic ceramics with improved properties compared to the bulk-counterparts. The results of X-ray and TEM analyses confirmed the nanosized nature and spinel type structure of the investigated samples. Raman and Mössbauer spectroscopy studies implied on the possible cation distribution between the tetrahedral and octahedral sites and formation of the partially inversed spinel. The study of the magnetic properties showed that hysteresis loops do not saturate even in the presence of high magnetic fields, which confirmed the superparamagnetic and single domain nature of the samples. These observations imply that, besides the particle size, doping (e.g. yttrium and indium) causes significant structural rearrangements which in turn induce changes in magnetic behavior of the investigated nanoparticulate systems.
Books on the topic "Ferrites spinel"
Phillips, Peter John. Conduction processes in spinel ferrites. [s.l.]: typescript, 1991.
Find full textSpinel Ferrite Nanostructures for Energy Storage Devices. Elsevier, 2020. http://dx.doi.org/10.1016/c2018-0-04420-5.
Full textMane, Rajaram S., and Vijaykumar Jadhav. Spinal Ferrite Nanostructures for Energy Storage Devices. Elsevier, 2020.
Find full textMane, Rajaram S., and Vijaykumar Jadhav. Spinal Ferrite Nanostructures for Energy Storage Devices. Elsevier, 2020.
Find full textAdvanced Spinel Ferrite Nanocomposites for Electromagnetic Interference Shielding Applications. Elsevier, 2021. http://dx.doi.org/10.1016/c2018-0-05541-3.
Full text12 Mile Remembered Our Lives Before They Burned Our Homesteads: Flooded and burned dreams of a small community in British Columbia. Victoria, Canada: Trafford Publishing, 2008.
Find full textBook chapters on the topic "Ferrites spinel"
Tang, Gui-De. "Spinel Ferrites with Canted Magnetic Coupling." In New Itinerant Electron Models of Magnetic Materials, 129–46. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1271-8_8.
Full textTang, Gui-De. "Magnetic Ordering of Typical Spinel Ferrites." In New Itinerant Electron Models of Magnetic Materials, 81–100. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1271-8_6.
Full textTailhades, Ph. "Original Spinel Ferrites for New Mass Storage Media." In Nano-Crystalline and Thin Film Magnetic Oxides, 3–26. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4493-3_1.
Full textSharath, R., Nagaraju Kottam, H. Muktha, K. Samrat, M. Chandraprabha, R. Harikrishna, and Bincy Rose Vergis. "Spinel Ferrites—A Future Boon to Nanotechnology- Based Therapies." In Nanomaterials, 297–316. Oakville, ON ; Waretown, NJ : Apple Academic Press, [2018]: Apple Academic Press, 2018. http://dx.doi.org/10.1201/b21267-14.
Full textTang, Gui-De. "Experimental Evidences of the IEO Model Obtained from Spinel Ferrites." In New Itinerant Electron Models of Magnetic Materials, 101–27. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1271-8_7.
Full textMsomi, J. Z., T. Moyo, and K. Bharuth-Ram. "MÖssbauer and XRD Study of (Zn, Cd) x Co1−x Fe2−x Al x O4 Spinel Ferrites." In Hyperfine Interactions (C), 181–84. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0281-3_45.
Full textSharma, Ruchi, and Satbir Singh. "The Role of Various Spinel Ferrites Magnetic Nanoparticles in the Improvement of Photovoltaic Performance of Organic Solar Cell: A Review." In Springer Proceedings in Energy, 193–99. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63085-4_26.
Full textGreenblatt, M., and B. Raveau. "Oxides Based on the Spinel Structure; Hexagonal Ferrites, β-Alumina Oxide Types, and LiX M2 O4 (M = Ti, V, Mn)1-3." In Inorganic Reactions and Methods, 195–96. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145203.ch129.
Full textFrolova, L. A., O. A. Pivovarov, O. A. Kushnerov, and N. M. Tolstopalova. "Peculiarities of the Crystal-Chemical Structure of Spinel Ferrites CoxFe3-xO4 (0.25 ≤ x ≤1) Obtained Under the Action of a Low-Temperature Contact Nonequilibrium Plasma." In Springer Proceedings in Physics, 79–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92567-7_5.
Full textDolia, S. N., Arun S. Prasad, M. S. Dhawan, M. P. Sharma, and Subhash Chander. "Magnetic behaviour of nanocrystalline Ni0.5Cu0.5Fe2O4 spinel ferrite." In ICAME 2007, 489–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78697-9_64.
Full textConference papers on the topic "Ferrites spinel"
Allendorf, Mark D., Richard B. Diver, James E. Miller, and Nathan P. Siegel. "Thermodynamic Analysis of Mixed-Metal Ferrites for Hydrogen Production by Two-Step Water Splitting." In ASME 2006 International Solar Energy Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/isec2006-99114.
Full textBorikar, M. A., D. M. Borikar, A. S. Kakde, and K. G. Rewatkar. "Nickel nano spinel ferrites: Synthesis and characterization." In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). IEEE, 2016. http://dx.doi.org/10.1109/iceeot.2016.7755306.
Full textOCHMANN, Martin, Fredericus M. A. LINDERHOF, and Libor MACHALA. "Spinel ferrites nanoparticles for alloy steel protective layers." In NANOCON 2020. TANGER Ltd., 2020. http://dx.doi.org/10.37904/nanocon.2020.3722.
Full textKaczmarek, W. A., A. Calka, and B. W. Ninham. "Magnetic Properties Of Aerosol Synthesized Co-substituted Spinel Ferrites." In 1993 Digests of International Magnetics Conference. IEEE, 1993. http://dx.doi.org/10.1109/intmag.1993.642605.
Full textLazarevic, Zorica, Aleksandra Milutinovic, Maja Romcevic, Nebojsa Romcevic, Cedomir Jovalekic, Dalibor Sekulic, and Milos Slankamenac. "Soft mechanochemical synthesis and characterization of nanodimensional spinel ferrites." In 2012 Joint 21st IEEE ISAF / 11th IEEE ECAPD / IEEE PFM (ISAF/ECAPD/PFM). IEEE, 2012. http://dx.doi.org/10.1109/isaf.2012.6297730.
Full textHooda, Ashima, Sujata Sanghi, Ashish Agarwal, Satish Khasa, and Bhawana Hooda. "Rietveld refinement and electrical properties of Ni-Zn spinel ferrites." In DAE SOLID STATE PHYSICS SYMPOSIUM 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4980251.
Full textAshima, S. Dagar, Sonia, Krittika, and S. Khasa. "Structural and electrical properties of Ni-Mg-Zn spinel ferrites." In DAE SOLID STATE PHYSICS SYMPOSIUM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0016667.
Full textNandanwar, A. K., D. S. Chaoudhary, S. A. Tirpude, and K. G. Rewatkar. "Synthesis and Electric behavior of Cd-doped nano-size spinel ferrites." In International Conference on Science and Engineering for Sustainable Development. Infogain Publication, 2017. http://dx.doi.org/10.24001/icsesd2017.38.
Full textThummer, K. P., Ashish R. Tanna, and Hiren H. Joshi. "Rietveld structure refinement and elastic properties of MgAlxCrxFe2−2xO4 spinel ferrites." In FUNCTIONAL OXIDES AND NANOMATERIALS: Proceedings of the International Conference on Functional Oxides and Nanomaterials. Author(s), 2017. http://dx.doi.org/10.1063/1.4982142.
Full textBranická, Eva, Mariana Ušáková, Elemír Ušák, Martin Šoka, and Edmund Dobročka. "Effect of Eu substitution on magnetic behavior of spinel nickel ferrites." In APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5119456.
Full textReports on the topic "Ferrites spinel"
Stevenson, Jeffry W., Eric M. Riel, Elizabeth V. Stephens, and Mohammad A. Khaleel. Surface Treatments for Improved Performance of Spinel-coated AISI 441 Ferritic Stainless Steel. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1068652.
Full textYang, Zhenguo, Guanguang Xia, Chong M. Wang, Zimin Nie, Joshua D. Templeton, Prabhakar Singh, and Jeffry W. Stevenson. Investigation of AISI 441 Ferritic Stainless Steel and Development of Spinel Coatings for SOFC Interconnect Applications. Office of Scientific and Technical Information (OSTI), May 2008. http://dx.doi.org/10.2172/1019232.
Full text