Academic literature on the topic 'Ferritic-Bainitic steels'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ferritic-Bainitic steels.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ferritic-Bainitic steels"

1

Cabrini, Marina, Lorenzi Sergio, Pesenti Bucella Diego, and Pastore Tommaso Tommaso. "Hydrogen Embrittlement and Diffusion in High Strength Low Alloyed Steels with Different Microstructures." Insight - Material Science 2, no. 1 (2019): 8. http://dx.doi.org/10.18282/ims.v2i1.182.

Full text
Abstract:
<p class="BodyText1">The paper deals with the effect of microstructure on the hydrogen diffusion in traditional ferritic-pearlitic HSLA steels and new high strength steels, with tempered martensite microstructures or banded ferritic-bainitic-martensitic microstructures. Diffusivity was correlated to the hydrogen embrittlement resistance of steels, evaluated by means of slow strain rate tests. </p>
APA, Harvard, Vancouver, ISO, and other styles
2

Abd El Rahman, Sherif Ali, Ahmed Shash, Mohamed K. El-Fawkhry, Ahmed Zaki Farahat, and Taha Mattar. "Designing, Processing and Isothermal Transformation of Al-Si Medium Carbon Ultrafine High Strength Bainitic Steel." Defect and Diffusion Forum 380 (November 2017): 1–11. http://dx.doi.org/10.4028/www.scientific.net/ddf.380.1.

Full text
Abstract:
Medium-carbon, silicon-rich steels are commonly suggested to obtain a very fine bainitic microstructure at a low temperature slightly above Ms. Thereby, the resulted microstructure consists of slender bainitic-ferritic plates interwoven with retained austenite. The advanced strength and ductility package of this steel is much dependent on the fineness of bainitic ferrite, as well as the retained austenite phase. In this article, the aluminum to silicon ratio, and the isothermal transformation temperature have been adopted to obtain ultra-high strength high carbon steel. Optical and SEM investigation of the produced steels have been performed. XRD has been used to track the retained austenite development as a result of the change in the chemical composition of developed steels and heat treatment process. Mechanical properties in terms of hardness and microhardness of obtained phases and structure were investigated. Results show that the increment of aluminum to silicon ratio has a great effect in promoting the bainitic transformation, in tandem with improving the stability and the fineness of retained austenite. Such an advanced structure leads to enhancement in the whole mechanical properties of the high carbon steel.
APA, Harvard, Vancouver, ISO, and other styles
3

Kulecki, P., E. Lichańska, and M. Sułowski. "The Effect of Processing Parameters on Microstructure and Mechanical Properties of Sintered Structural Steels Based on Prealloyed Powders / Wpływ Parametrów Wytwarzania Na Strukturę I Własności Mechaniczne Spiekanych Stali Wykonanych Na Bazie Proszków Stopowych." Archives of Metallurgy and Materials 60, no. 4 (2015): 2543–48. http://dx.doi.org/10.1515/amm-2015-0411.

Full text
Abstract:
The object of the study was to evaluate the effect of production parameters on the structure and mechanical properties of Cr and Cr-Mo PM steels. The measurements were performed on sintered steels made from commercial Höganäs pre-alloyed powders: Astaloy CrA, Astaloy CrL and Astaloy CrM mixed with carbon, added in the form of graphite powder grade C-UF.Following mixing in a Turbula mixer for 30 minutes, green compacts were single pressed at 660 MPa according to PNEN ISO 2740 standard. Sintering was carried out in a laboratory horizontal furnace at 1120°C and 1250°C for 60 minutes, in 5%H2-95%N2atmosphere. After sintering, the samples were tempered at 200°C for 60 minutes in air. The steels are characterized by ferritic - pearlitic, bainitic - ferritic and bainitic structures.Following mechanical testing, it can be assumed that steel based on Astaloy CrA pre-alloyed powder could be an alternative material for steels based on Astaloy CrL powder. These steels sintered at 1250°C with 0.6% C had tensile strengths about 650 MPa, offset yield strengths about 300 MPa, elongations about 8.50 %, TRSs about 1100 MPa, hardnesses 220 HV.
APA, Harvard, Vancouver, ISO, and other styles
4

Wirths, Vera, Rainer Wagener, Wolfgang Bleck, and Tobias Melz. "Bainitic Forging Steels for Cyclic Loading." Advanced Materials Research 922 (May 2014): 813–18. http://dx.doi.org/10.4028/www.scientific.net/amr.922.813.

Full text
Abstract:
Light-weight design is one of the main drivers for material development in the automotive industry. For optimum weight reduction new materials and their fatigue behavior under real cyclic service loads have to be taken into account (Gassner test). Currently the casted components made from Austempered Ductile Iron (ADI) show better service fatigue life for variable load cases than some traditional forging steels because of it’s inherent retained austenite. The traditional forging steels are the precipitation hardening ferritic-pearlitic steels (PHFP steel) and the martensitic quenched and tempered (Q&T) steels. The next steel generation for forged components in the drive train might be bainitic steels with an optimized microstructure with respect to cyclic behavior. Depending on the chemical composition and the heat treatment it includes a ferritic primary phase and a secondary phase, which consists of either carbides, martensite, retained austenite or M/A constituents. By alloying of more than 1% Si the formation of cementite will be suppressed and a carbide free bainite (CFB) will be formed. The secondary phase of this CFB contains retained austenite, which has the possibility to close crack tips by local compression stresses due to the transformation to martensite. As a result of this CFB exhibits better cyclic properties than the commonly used forging steels. The materials and process design as well as results of the fatigue behavior will be presented.
APA, Harvard, Vancouver, ISO, and other styles
5

Vuorinen, E., V. Heino, N. Ojala, O. Haiko, and A. Hedayati. "Erosive-abrasive wear behavior of carbide-free bainitic and boron steels compared in simulated field conditions." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 232, no. 1 (2017): 3–13. http://dx.doi.org/10.1177/1350650117739125.

Full text
Abstract:
The wear resistance of carbide-free bainitic microstructures have recently shown to be excellent in sliding, sliding-rolling, and erosive-abrasive wear. Boron steels are often an economically favorable alternative for similar applications. In this study, the erosive-abrasive wear performance of the carbide-free bainitic and boron steels with different heat treatments was studied in mining-related conditions. The aim was to compare these steels and to study the microstructural features affecting wear rates. The mining-related condition was simulated with an application oriented wear test method utilizing dry abrasive bed of 8–10 mm granite particles. Different wear mechanisms were found; in boron steels, micro-cutting and micro-ploughing were dominating mechanisms, while in the carbide-free bainitic steels, also impact craters with thin platelets were observed. Moreover, the carbide-free bainitic steels had better wear performance, which can be explained by the different microstructure. The carbide-free bainitic steels had fine ferritic-austenitic microstructure, whereas in boron steels microstructure was martensitic. The level of retained austenite was quite high in the carbide-free bainitic steels and that was one of the factors improving the wear performance of these steels. The hardness gradients with orientation of the deformation zone on the wear surfaces were one of the main affecting factors as well. Smoother work hardened hardness profiles were considered beneficial in these erosive-abrasive wear conditions.
APA, Harvard, Vancouver, ISO, and other styles
6

Eggbauer, Gernot, and Bruno Buchmayr. "Optimized Cooling Strategies for Bainitic Forging Steels." Key Engineering Materials 716 (October 2016): 472–80. http://dx.doi.org/10.4028/www.scientific.net/kem.716.472.

Full text
Abstract:
New steel grades for forged components are designed to meet the requirements of the automotive industry in order to obtain excellent strength and toughness behavior as well as a high endurance limit. Beside precipitation hardened ferritic-pearlitic steels, bainitic steels have gained more and more importance. Basic considerations on the alloy design (C-, Si-, Cr-; B-content) are done using JMatPro-Calculations and by some experimental trials. Using the thermomechanical testing system Gleeble 3800, various cooling strategies have been applied and the kinetics of the bainite formation has been measured at different holding temperatures and times. A detailed microstructural characterization has been done with relation to the mechanical properties. The isothermal tests are compared to continuous cooling situations. Finally, forging trials are performed to find out the most suitable and robust production schedule to be used in practice. The actual findings support the increasing use of bainitic steels for forged parts, especially regarding material saving, independence of cross section and good fatigue performance.
APA, Harvard, Vancouver, ISO, and other styles
7

Hodgson, Peter, Subrata Mukherjee, Hossein Beladi, Xiang Yuan Xiong, and Ilana B. Timokhina. "Atomic Scale Investigation of Solutes and Precipitates in High Strength Steels." Materials Science Forum 762 (July 2013): 14–21. http://dx.doi.org/10.4028/www.scientific.net/msf.762.14.

Full text
Abstract:
Two steels, ferritic, high strength with interphase precipitation and nanobainitic, were used to show the advances in and application of atom probe. The coexistence of the nanoscale, interphase Nb-Mo-C clusters and stoichiometric MC nanoparticles was found in the high strength steel after thermomechanical processing. Moreover, the segregation of carbon at different heterogeneous sites such as grain boundary that reduces the solute element available for fine precipitation was observed. The APT study of the solutes redistribution between the retained austenite and bainitic ferrite in the nanobainitic steel revealed: (i) the presence of two types of the retained austenite with higher and lower carbon content and (ii) segregation of carbon at the local defects such as dislocations in the bainitic ferrite during the isothermal hold.
APA, Harvard, Vancouver, ISO, and other styles
8

Menzel, Max, Anastasia Höhne, Gerhard Gevelmann, Andreas Tomitz, Ulrich Prahl, and Wolfgang Bleck. "Application Specific Microstructure Development in Microalloyed Bainitic Hot Strip." Materials Science Forum 949 (March 2019): 76–84. http://dx.doi.org/10.4028/www.scientific.net/msf.949.76.

Full text
Abstract:
During the hot rolling of bainitic steels, time and temperature must be controlled within narrow limits to avoid undesirable ferritic or martensitic phase fractions. In order to design a reliable process window for the production of bainitic steels, the effects of the different process parameters on the phase transformation and the final properties of a microalloyed and a non-microalloyed steel were investigated. Thermomechanical tests with the possibility of producing secondary samples were conducted to analyze the influence on the mechanical properties strength and toughness. Transmission electron microscopy (TEM) and electron probe micro analysis (EPMA) were used to investigate the origin of the differing properties. In particular, it has been found that thermomechanical rolling of the microalloyed steel leads to an improvement in strength. This is partly due to the transformation kinetics and partly to strain-induced precipitations. Further, the hardening behavior is affected by the secondary phase within the bainitic matrix configured through the cooling strategy. Coarse Martensite/Austenite (MA) structures reduce toughness, whereas finely dispersed MA islands increase the hardening potential. Furthermore, the results from the material experiments were used to develop a rate model in combination with a nucleation model to predict the kinetics of the phase transformation and the shape of the bainitic microstructure.
APA, Harvard, Vancouver, ISO, and other styles
9

di Schino, Andrea, and Claudio Guarnaschelli. "Microstructure and Cleavage Resistance of High Strength Steels." Materials Science Forum 638-642 (January 2010): 3188–93. http://dx.doi.org/10.4028/www.scientific.net/msf.638-642.3188.

Full text
Abstract:
The relationship between microstructure and cleavage resistance in quenched and tempered high strength bainitic and martensitic steels is investigated by means of Charpy-V three-point bending tests, uniaxial tensile test on unnotched specimens and EBSD. Steels under investigation are low/medium carbon (C=0.10%-0.40%) steels with yield strength in the range YS=500-1000 MPa. Results show that the tensile strength and the cleavage resistance of Q&T steels appear to be controlled by different structural parameters and not, as in the case of polygonal ferritic steels, by the same structural unit. In particular, yield strength is controlled by the mean subgrain size, whereas the structural unit controlling the critical cleavage stress is the covariant (bainitic or martensitic) packet, whose size is slightly lower than the average unit crack path (UCP). The critical stage in the fracture process appears to be the propagation of a Griffith crack from one packet to another, and the resistance offered by high-angle boundaries is approximately the same as that of low-C steels with bainitic or polygonal ferrite microstructure.
APA, Harvard, Vancouver, ISO, and other styles
10

Nyyssönen, Tuomo, Olli Oja, Petri Jussila, Ari Saastamoinen, Mahesh Somani, and Pasi Peura. "Quenching and Partitioning of Multiphase Aluminum-Added Steels." Metals 9, no. 3 (2019): 373. http://dx.doi.org/10.3390/met9030373.

Full text
Abstract:
The quenching and partitioning response following intercritical annealing was investigated for three lean TRIP-type high-Al steel compositions. Depending on the intercritical austenite fraction following annealing, the steels assumed either a ferrite/martensite/retained austenite microstructure or a multiphase structure with ferritic, bainitic and martensitic constituents along with retained austenite. The amount of retained austenite was found to correlate with the initial quench temperature and, depending on the intercritical annealing condition prior to initial quenching, with the uniform and ultimate elongations measured in tensile testing.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography