Journal articles on the topic 'Ferroelectric domain structure'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Ferroelectric domain structure.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Huyan, Huaixun, Linze Li, Christopher Addiego, Wenpei Gao, and Xiaoqing Pan. "Structures and electronic properties of domain walls in BiFeO3 thin films." National Science Review 6, no. 4 (2019): 669–83. http://dx.doi.org/10.1093/nsr/nwz101.
Full textDORFMAN, SIMON, DAVID FUKS, ALEX GORDON, and PETER WYDER. "WETTING OF THE FERROELECTRIC DOMAIN STRUCTURE IN (Ba,Sr)TiO3." Surface Review and Letters 06, no. 06 (1999): 1221–27. http://dx.doi.org/10.1142/s0218625x99001372.
Full textTan, Qi, Z. Xu, and Dwight Viehland. "Commonalties of the influence of lower valent A-site and B-site modifications on lead zirconate titanate ferroelectrics and antiferroelectrics." Journal of Materials Research 14, no. 2 (1999): 465–75. http://dx.doi.org/10.1557/jmr.1999.0067.
Full textInoshita, Takumi, Yasuhide Inoue, Yoichi Horibe, and Yasumasa Koyama. "Features of the ferroelectric domain structure in the multiferroic material YbMnO3." MRS Advances 1, no. 9 (2016): 591–96. http://dx.doi.org/10.1557/adv.2016.154.
Full textGareeva, Z. V., and A. K. Zvezdin. "The Influence of Magnetoelectric Interactions on the Domain Walls in Multiferroics." Solid State Phenomena 190 (June 2012): 265–68. http://dx.doi.org/10.4028/www.scientific.net/ssp.190.265.
Full textHerber, Ralf-Peter, and Gerold A. Schneider. "Surface displacements and surface charges on Ba2CuWO6 and Ba2Cu0.5Zn0.5WO6 ceramics induced by local electric fields investigated with scanning-probe microscopy." Journal of Materials Research 22, no. 1 (2007): 193–200. http://dx.doi.org/10.1557/jmr.2007.0030.
Full textKriegner, Dominik, Gunther Springholz, Carsten Richter, et al. "Ferroelectric Self-Poling in GeTe Films and Crystals." Crystals 9, no. 7 (2019): 335. http://dx.doi.org/10.3390/cryst9070335.
Full textLisjikh, Boris, Mikhail Kosobokov, and Vladimir Shur. "The Creation of a Domain Structure Using Ultrashort Pulse NIR Laser Irradiation in the Bulk of MgO-Doped Lithium Tantalate." Photonics 11, no. 10 (2024): 928. http://dx.doi.org/10.3390/photonics11100928.
Full textHao, Xiaotian, and Hailong Wang. "Engineering Application of Nanomaterial and Ferroelectric Domain Polarization to the Dynamic Structure of the Surrounding Rock of Heavy-Duty Railway with Small Clear Intersection Tunnel." Advances in Materials Science and Engineering 2023 (February 7, 2023): 1–13. http://dx.doi.org/10.1155/2023/8354167.
Full textWang, Jian-Jun, Bo Wang, and Long-Qing Chen. "Understanding, Predicting, and Designing Ferroelectric Domain Structures and Switching Guided by the Phase-Field Method." Annual Review of Materials Research 49, no. 1 (2019): 127–52. http://dx.doi.org/10.1146/annurev-matsci-070218-121843.
Full textZhang, X., D. C. Joy, L. F. Allard, and T. A. Nolan. "Application of electron holography to ferroelectric study." Proceedings, annual meeting, Electron Microscopy Society of America 51 (August 1, 1993): 1092–93. http://dx.doi.org/10.1017/s0424820100151295.
Full textOsman, Rozana A. M., Mohd Sobri Idris, Zul Azhar Zahid Jamal, et al. "Ferroelectric and Relaxor Ferroelectric to Paralectric Transition Based on Lead Magnesium Niobate (PMN) Materials." Advanced Materials Research 795 (September 2013): 658–63. http://dx.doi.org/10.4028/www.scientific.net/amr.795.658.
Full textUrsic, Hana, and Matej Sadl. "Investigation of piezoelectric 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 films in cross section using piezo-response force microscopy." Applied Physics Letters 121, no. 19 (2022): 192905. http://dx.doi.org/10.1063/5.0104829.
Full textYan, Yabin, Mingzhi Xiang, Xiaoyuan Wang, Tao Xu, and Fuzhen Xuan. "Ferroelectric domain wall in two-dimensional GeS." Journal of Applied Physics 132, no. 7 (2022): 074302. http://dx.doi.org/10.1063/5.0094689.
Full textBorodina, V. V., and S. O. Kramarov. "Effect of mechanical stresses on the domain structure of barium titanate single crystals." Russian Technological Journal 8, no. 4 (2020): 66–78. http://dx.doi.org/10.32362/2500-316x-2020-8-4-66-78.
Full textSokolov, A. A., and S. D. Ivanov. "THIN FERROELECTRIC FILM DOMAIN STRUCTURE." Автометрия 58, no. 2 (2022): 54–60. http://dx.doi.org/10.15372/aut20220207.
Full textZhong, W. L., Y. X. Wang, C. L. Wang, B. Jiang, and L. A. Bursill. "Domain structure in ferroelectric particles." Ferroelectrics 252, no. 1 (2001): 11–19. http://dx.doi.org/10.1080/00150190108016236.
Full textOgawa, Toshio. "Domain structure of ferroelectric ceramics." Ceramics International 26, no. 4 (2000): 383–90. http://dx.doi.org/10.1016/s0272-8842(99)00100-5.
Full textZhao, Xiaofang, and A. K. Soh. "Piezoelectric properties of rhombohedral ferroelectric materials with phase transition." Functional Materials Letters 08, no. 03 (2015): 1540008. http://dx.doi.org/10.1142/s1793604715400081.
Full textMaslovskaya, Anna, Tatyana Barabash, and Elena Veselova. "Polarization Switching Response and Domain Structure Dynamics Induced in Ferroelectrics by Incident Electron Beams." Solid State Phenomena 247 (March 2016): 131–37. http://dx.doi.org/10.4028/www.scientific.net/ssp.247.131.
Full textGrünebohm, Anna, Madhura Marathe, Ruben Khachaturyan, Raphael Schiedung, Doru C. Lupascu, and Vladimir V. Shvartsman. "Interplay of domain structure and phase transitions: theory, experiment and functionality." Journal of Physics: Condensed Matter 34, no. 7 (2021): 073002. http://dx.doi.org/10.1088/1361-648x/ac3607.
Full textAkhmatkhanov, Andrey, Constantine Plashinnov, Maxim Nebogatikov, Evgenii Milov, Ilya Shnaidshtein, and Vladimir Shur. "In Situ Imaging of Domain Structure Evolution in LaBGeO5 Single Crystals." Crystals 10, no. 7 (2020): 583. http://dx.doi.org/10.3390/cryst10070583.
Full textNormand, Laurent, Alain Thorel, and Yvan Montardi. "HREM study of ferroelectric domain wall in barium titanate." Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994): 566–67. http://dx.doi.org/10.1017/s0424820100170566.
Full textTang, Yuan-Yuan, Yongfa Xie, Yong Ai, et al. "Organic Ferroelectric Vortex–Antivortex Domain Structure." Journal of the American Chemical Society 142, no. 52 (2020): 21932–37. http://dx.doi.org/10.1021/jacs.0c11416.
Full textAl’ Rifai, S. A., B. M. Darinskii, A. P. Lazarev, and A. S. Sigov. "Domain structure in ferroelectric-ferromagnetic films." Physics of the Solid State 54, no. 5 (2012): 980–83. http://dx.doi.org/10.1134/s1063783412050034.
Full textLucuta, Petru Grigorie. "Ferroelectric-Domain Structure in Piezoelectric Ceramics." Journal of the American Ceramic Society 72, no. 6 (1989): 933–37. http://dx.doi.org/10.1111/j.1151-2916.1989.tb06247.x.
Full textFesenko, E. G., V. G. Gavrilyatchenko, and A. F. Semenchev. "Domain structure of multiaxial ferroelectric crystals." Ferroelectrics 100, no. 1 (1989): 195–207. http://dx.doi.org/10.1080/00150198908007915.
Full textParinov, I. A. "Domain structure and ferroelectric ceramic fracture." Ferroelectrics 172, no. 1 (1995): 253–56. http://dx.doi.org/10.1080/00150199508018483.
Full textWang, C. L. "Surface effect on ferroelectric domain structure." Solid State Communications 82, no. 9 (1992): 743–44. http://dx.doi.org/10.1016/0038-1098(92)90073-i.
Full textHuang, Jing, Pengfei Tan, Fang Wang, and Bo Li. "Ferroelectric Memory Based on Topological Domain Structures: A Phase Field Simulation." Crystals 12, no. 6 (2022): 786. http://dx.doi.org/10.3390/cryst12060786.
Full textAoyagi, Kenta, Takanori Kiguchi, Yoshitaka Ehara, Hiroshi Funakubo, and Toyohiko J. Konno. "TEM Observation on Ferroelectric Domain Structures of PbTiO3 Epitaxial Films." Key Engineering Materials 485 (July 2011): 179–82. http://dx.doi.org/10.4028/www.scientific.net/kem.485.179.
Full textKraya, Laura Y., and Ramsey Kraya. "Polarization dependence of molecular adsorption on ferroelectrics." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 69, no. 2 (2013): 105–9. http://dx.doi.org/10.1107/s2052519213003308.
Full textKubasov, I. V., A. M. Kislyuk, A. V. Turutin, M. D. Malinkovich, and Yu N. Parkhomenko. "Bidomain ferroelectric crystals: properties and prospects of application." Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering 23, no. 1 (2020): 5–56. http://dx.doi.org/10.17073/1609-3577-2020-1-5-56.
Full textYang, Jia, Zhipeng Gao, Yi Liu, et al. "Time dependence of domain structures in potassium sodium niobate-based piezoelectric ceramics." RSC Advances 11, no. 33 (2021): 20057–62. http://dx.doi.org/10.1039/d1ra03304b.
Full textHuang, Yao Ting, Xiu Li Fu, Xiao Hong Zhao, and Wei Hua Tang. "A Review of the Influential Factors on the Ferroelectric Domain Structure in BiFeO3 Thin Films." Key Engineering Materials 544 (March 2013): 219–25. http://dx.doi.org/10.4028/www.scientific.net/kem.544.219.
Full textKuzenko, D. V. "Determination of the Activation Energy of Defects in Ferroelectrics by the Method of Temperature Activation–Relaxation of the Dielectric Permittivity." Поверхность. Рентгеновские, синхротронные и нейтронные исследования, no. 5 (September 22, 2024): 29–34. http://dx.doi.org/10.31857/s1028096024050055.
Full textRafiq, M. A., M. E. Costa, I. M. Reaney, and P. M. Vilarinho. "Transmission Electron Microscopy of Mn-doped KNN Ceramics." Microscopy and Microanalysis 19, S4 (2013): 99–100. http://dx.doi.org/10.1017/s1431927613001116.
Full textZelenovskiy, Pavel, Evgeny Greshnyakov, Dmitry Chezganov, et al. "Micro-Raman Imaging of Ferroelectric Domain Structures in the Bulk of PMN-PT Single Crystals." Crystals 9, no. 2 (2019): 65. http://dx.doi.org/10.3390/cryst9020065.
Full textZhang, Kena, Yao Ren, and Ye Cao. "Mechanically tunable elastic modulus of freestanding Ba1−xSrxTiO3 membranes via phase-field simulation." Applied Physics Letters 121, no. 15 (2022): 152902. http://dx.doi.org/10.1063/5.0099772.
Full textVasileva, Daria, Semen Vasilev, Andrei L. Kholkin та Vladimir Ya Shur. "Domain Diversity and Polarization Switching in Amino Acid β-Glycine". Materials 12, № 8 (2019): 1223. http://dx.doi.org/10.3390/ma12081223.
Full textDenneulin, T., and A. S. Everhardt. "A transmission electron microscopy study of low-strain epitaxial BaTiO3 grown onto NdScO3." Journal of Physics: Condensed Matter 34, no. 23 (2022): 235701. http://dx.doi.org/10.1088/1361-648x/ac5db3.
Full textXiao, Chang Jiang, Zheng Xin Li, and Xiang Rong Deng. "Simultaneous Observation of Nanocrystalline BaTiO3 Ceramics Surface Morphology and Ferroelectricity Using Scanning Nonlinear Dielectric Microscopy." Advanced Materials Research 146-147 (October 2010): 1252–55. http://dx.doi.org/10.4028/www.scientific.net/amr.146-147.1252.
Full textKislyuk, Alexander M., Tatiana S. Ilina, Ilya V. Kubasov, et al. "Tailoring of stable induced domains near a charged domain wall in lithium niobate by probe microscopy." Modern Electronic Materials 5, no. 2 (2019): 51–60. http://dx.doi.org/10.3897/j.moem.5.2.51314.
Full textAlikin, Denis, Anton Turygin, Andrei Ushakov, et al. "Competition between Ferroelectric and Ferroelastic Domain Wall Dynamics during Local Switching in Rhombohedral PMN-PT Single Crystals." Nanomaterials 12, no. 21 (2022): 3912. http://dx.doi.org/10.3390/nano12213912.
Full textSokolov, A. A., and S. D. Ivanov. "The Domain Structure of Thin Ferroelectric Films." Optoelectronics, Instrumentation and Data Processing 58, no. 2 (2022): 154–59. http://dx.doi.org/10.3103/s875669902202008x.
Full textNAMBU, Shinji. "Domain Structure and Hysteresis of Ferroelectric Perovskites." Hyomen Kagaku 17, no. 11 (1996): 654–59. http://dx.doi.org/10.1380/jsssj.17.654.
Full textNECHAEV, V. N., and A. V. SHUBA. "Domain Structure of Thin Ferroelectric—Ferroelastic Films." Ferroelectrics 307, no. 1 (2004): 53–58. http://dx.doi.org/10.1080/00150190490492178.
Full textNakatani, N. "Observation of Ferroelectric Domain Structure in TGS." Ferroelectrics 413, no. 1 (2011): 238–65. http://dx.doi.org/10.1080/00150193.2011.554269.
Full textZeng, Huizhong, Shengbo Lu, Linshan Dai, Jingsong Liu, Zhihong Wang, and Changming Zuo. "Ferroelectric domain structure of discrete PbTiO3 nanograins." Materials Letters 59, no. 22 (2005): 2808–11. http://dx.doi.org/10.1016/j.matlet.2005.03.060.
Full textĆwikiel, K., B. Fugiel, and M. Mierzwa. "The rigid domain structure in TGS ferroelectric." Physica B: Condensed Matter 293, no. 1-2 (2000): 58–66. http://dx.doi.org/10.1016/s0921-4526(00)00532-9.
Full text