Academic literature on the topic 'Feynman rules'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Feynman rules.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Feynman rules"
Kleiss, R., I. Malamos, and G. van den Oord. "Majoranized Feynman rules." European Physical Journal C 64, no. 3 (September 23, 2009): 387–89. http://dx.doi.org/10.1140/epjc/s10052-009-1158-0.
Full textGates, Evalyn I., and Kenneth L. Kowalski. "Majorana Feynman rules." Physical Review D 37, no. 4 (February 15, 1988): 938–45. http://dx.doi.org/10.1103/physrevd.37.938.
Full textALUFFI, PAOLO, and MATILDE MARCOLLI. "ALGEBRO-GEOMETRIC FEYNMAN RULES." International Journal of Geometric Methods in Modern Physics 08, no. 01 (February 2011): 203–37. http://dx.doi.org/10.1142/s0219887811005099.
Full textPinsky, Stephen S., and L. M. Simmons. "Feynman rules for theδexpansion." Physical Review D 38, no. 8 (October 15, 1988): 2518–25. http://dx.doi.org/10.1103/physrevd.38.2518.
Full textWu, Tai Tsun, and Sau Lan Wu. "Failure of the Feynman R1 gauge for the standard model: An explicit example." International Journal of Modern Physics A 31, no. 04n05 (February 3, 2016): 1650028. http://dx.doi.org/10.1142/s0217751x16500287.
Full textTikochinsky, Yoel. "Feynman rules for probability amplitudes." International Journal of Theoretical Physics 27, no. 5 (May 1988): 543–49. http://dx.doi.org/10.1007/bf00668836.
Full textHamber, Herbert W., and Shao Liu. "Feynman rules for simplicial gravity." Nuclear Physics B 472, no. 1-2 (July 1996): 447–77. http://dx.doi.org/10.1016/0550-3213(96)00216-7.
Full textChristensen, Neil D., and Claude Duhr. "FeynRules – Feynman rules made easy." Computer Physics Communications 180, no. 9 (September 2009): 1614–41. http://dx.doi.org/10.1016/j.cpc.2009.02.018.
Full textBounakis, Marios, and Gerasimos Rigopoulos. "Feynman rules for stochastic inflationary correlators." Journal of Cosmology and Astroparticle Physics 2020, no. 05 (May 26, 2020): 046. http://dx.doi.org/10.1088/1475-7516/2020/05/046.
Full textLawrie, I. D. "Feynman rules for nonequilibrium field theory." Journal of Physics A: Mathematical and General 25, no. 24 (December 21, 1992): 6493–505. http://dx.doi.org/10.1088/0305-4470/25/24/005.
Full textDissertations / Theses on the topic "Feynman rules"
Ghaderi, Hazhar. "Triangle Loop in Scalar Decay and Cutting Rules." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-212511.
Full textBelhaj, Mohamed Mohamed. "Renormalisation dans les algèbres de HOPF graduées connexes." Thesis, Clermont-Ferrand 2, 2014. http://www.theses.fr/2014CLF22515/document.
Full textIn this thesis, we study the renormalization of Connes-Kreimer in the contex of specified Feynman graphs Hopf algebra. We construct a Hopf algebra structure $\mathcal{H}_\mathcal{T}$ on the space of specified Feynman graphs of a quantum field theory $\mathcal{T}$. We define also a doubling procedure for the bialgebra of specified Feynman graphs, a convolution product and a group of characters of this Hopf algebra with values in some suitable commutative algebra taking momenta into account. We then implement the renormalization described by A. Connes and D. Kreimer and the Birkhoff decomposition for two renormalization schemes: the minimal subtraction scheme and the Taylor expansion scheme.We recall the definition of Feynman integrals associated with a graph. We prove that these integrals are holomorphic in a complex variable D in the case oh Schwartz functions, and that they extend in a meromorphic functions in the case of a Feynman type functions. Finally, we determine the finite parts of Feynman integrals using the BPHZ algorithm after dimensional regularization procedure
Sieg, Christoph. "Aspects of noncommutativity and holography in field theory and string theory." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2005. http://dx.doi.org/10.18452/15214.
Full textThis thesis addresses two topics: noncommutative Yang-Mills theories and the AdS/CFT correspondence. In the first part we study a partial summation of the theta-expanded perturbation theory. The latter allows one to define noncommutative Yang-Mills theories with arbitrary gauge groups G as a perturbation expansion in the noncommutativity parameter theta. We show that for G being a subset of U(N) but not equal to U(M), M
Ghaderi, Hazhar. "The Rare Decay of the Neutral Pion into a Dielectron." Thesis, Uppsala universitet, Kärnfysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-211683.
Full textChowdhury, Usman. "Cutting rules for Feynman diagrams at finite temperature." 2010. http://hdl.handle.net/1993/3856.
Full textHusain, Mohamed Amjad. "The [lambda phi] r theory : Feynman rules, renormalizability, regularization and renormalization." Thesis, 1986. http://spectrum.library.concordia.ca/5778/1/ML30693.pdf.
Full textFrancis, René M. "Gauge fields and Feynman rules in a fully left-right supersymmetric extension of the standard model." Thesis, 1989. http://spectrum.library.concordia.ca/3346/1/ML51350.pdf.
Full textPnevmonidis, Pantelis. "Feynman rules and static quantities of the charged vector bosons in a left-right supersymmetric extension of the standard model." Thesis, 2002. http://spectrum.library.concordia.ca/1693/1/MQ68413.pdf.
Full textBooks on the topic "Feynman rules"
Veltman, Martinus. Diagrammatica: The path to Feynman rules. Cambridge: Cambridge University Press, 1994.
Find full textBaulieu, Laurent, John Iliopoulos, and Roland Sénéor. Analyticity Properties of Feynman Diagrams. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788393.003.0020.
Full textKachelriess, Michael. Scalar field with λϕ4 interaction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198802877.003.0004.
Full textBaulieu, Laurent, John Iliopoulos, and Roland Sénéor. The Euclidean Functional Integrals. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788393.003.0010.
Full textBaulieu, Laurent, John Iliopoulos, and Roland Sénéor. Applications. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788393.003.0013.
Full textKachelriess, Michael. Gauge theories. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198802877.003.0010.
Full textBaulieu, Laurent, John Iliopoulos, and Roland Sénéor. Relativistic Quantum Fields. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788393.003.0012.
Full textBook chapters on the topic "Feynman rules"
Stone, Michael. "Feynman Rules." In Graduate Texts in Contemporary Physics, 37–47. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-0507-4_4.
Full textScadron, Michael D. "Covariant Feynman Rules." In Advanced Quantum Theory, 183–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61252-7_10.
Full textCline, James M. "The Feynman Rules." In SpringerBriefs in Physics, 11–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56168-0_3.
Full textÁlvarez-Gaumé, Luis, and Miguel Á. Vázquez-Mozo. "Towards Computational Rules: Feynman Diagrams." In An Invitation to Quantum Field Theory, 101–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23728-7_6.
Full textWeinberg, Steven. "Feynman Rules for Any Spin." In Special Relativity and Quantum Theory, 130–44. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3051-3_6.
Full textGreiner, Walter, and Joachim Reinhardt. "Summary: The Feynman Rules of QED." In Quantum Electrodynamics, 259–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05246-4_4.
Full textGreiner, Walter, and Joachim Reinhardt. "Summary: The Feynman Rules of QED." In Quantum Electrodynamics, 169–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-97223-2_4.
Full textGreiner, Walter, and Joachim Reinhardt. "Summary: The Feynman Rules of QED." In Quantum Electrodynamics, 221–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-88022-3_4.
Full textYnduráin, Francisco J. "Relativistic Collisions in Field Theory. Feynman Rules. Decays." In Relativistic Quantum Mechanics and Introduction to Field Theory, 267–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61057-8_11.
Full textLee, T. D. "Feynman rules of quantum chromodynamics inside a hadron." In Selected Papers, 174–91. Boston, MA: Birkhäuser Boston, 1986. http://dx.doi.org/10.1007/978-1-4612-5400-3_14.
Full textConference papers on the topic "Feynman rules"
Kreimer, Dirk, and Francis Brown. "Decomposing Feynman rules." In “Loops and Legs in Quantum Field Theory ” 11th DESY Workshop on Elementary Particle Physics. Trieste, Italy: Sissa Medialab, 2013. http://dx.doi.org/10.22323/1.151.0049.
Full textChauca, J., R. Doria, and W. Soares. "Feynman rules for a whole Abelian model." In THE SIXTH INTERNATIONAL SCHOOL ON FIELD THEORY AND GRAVITATION-2012. AIP, 2012. http://dx.doi.org/10.1063/1.4756984.
Full textDoria, Renato, and Mario Junior de Oliveira Neves. "Feynman rules for an intrinsic gauge model SU(N) x SU(N)." In 5th International School on Field Theory and Gravitation. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.081.0022.
Full textMithun, T., K. Porsezian, and Bishwajyoti Dey. "Bose-Einstein condensate in a rotating double-well potential: Hidden vortices and Feynman rule." In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4872508.
Full text