Academic literature on the topic 'Feynman rules'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Feynman rules.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Feynman rules"

1

Kleiss, R., I. Malamos, and G. van den Oord. "Majoranized Feynman rules." European Physical Journal C 64, no. 3 (September 23, 2009): 387–89. http://dx.doi.org/10.1140/epjc/s10052-009-1158-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gates, Evalyn I., and Kenneth L. Kowalski. "Majorana Feynman rules." Physical Review D 37, no. 4 (February 15, 1988): 938–45. http://dx.doi.org/10.1103/physrevd.37.938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

ALUFFI, PAOLO, and MATILDE MARCOLLI. "ALGEBRO-GEOMETRIC FEYNMAN RULES." International Journal of Geometric Methods in Modern Physics 08, no. 01 (February 2011): 203–37. http://dx.doi.org/10.1142/s0219887811005099.

Full text
Abstract:
We give a general procedure to construct "algebro-geometric Feynman rules", that is, characters of the Connes–Kreimer Hopf algebra of Feynman graphs that factor through a Grothendieck ring of immersed conical varieties, via the class of the complement of the affine graph hypersurface. In particular, this maps to the usual Grothendieck ring of varieties, defining "motivic Feynman rules". We also construct an algebro-geometric Feynman rule with values in a polynomial ring, which does not factor through the usual Grothendieck ring, and which is defined in terms of characteristic classes of singular varieties. This invariant recovers, as a special value, the Euler characteristic of the projective graph hypersurface complement. The main result underlying the construction of this invariant is a formula for the characteristic classes of the join of two projective varieties. We discuss the BPHZ renormalization procedure in this algebro-geometric context and some motivic zeta functions arising from the partition functions associated to motivic Feynman rules.
APA, Harvard, Vancouver, ISO, and other styles
4

Pinsky, Stephen S., and L. M. Simmons. "Feynman rules for theδexpansion." Physical Review D 38, no. 8 (October 15, 1988): 2518–25. http://dx.doi.org/10.1103/physrevd.38.2518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, Tai Tsun, and Sau Lan Wu. "Failure of the Feynman R1 gauge for the standard model: An explicit example." International Journal of Modern Physics A 31, no. 04n05 (February 3, 2016): 1650028. http://dx.doi.org/10.1142/s0217751x16500287.

Full text
Abstract:
The decay of the Higgs particle into two photons through a [Formula: see text] loop was calculated in a straightforward way four years ago on the basis of the standard model. This calculation was carried out in the unitary gauge. Nevertheless, all attempts to reproduce this correct answer using the Feynman rules in the [Formula: see text] gauge, or the more general [Formula: see text] gauge, have failed. In this paper, a detailed analysis is carried out to compare the unitary gauge with the [Formula: see text] gauge; through this comparison, the underlying reason is determined why the answer cannot be obtained using the Feynman rules in the [Formula: see text] gauge. This is the first example where the use of the Feynman rules in the [Formula: see text] gauge leads to an incorrect answer, and this incorrect answer cannot be ruled out by any simple argument such as gauge invariance. It means that great care must be exercised in using Feynman rules.
APA, Harvard, Vancouver, ISO, and other styles
6

Tikochinsky, Yoel. "Feynman rules for probability amplitudes." International Journal of Theoretical Physics 27, no. 5 (May 1988): 543–49. http://dx.doi.org/10.1007/bf00668836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hamber, Herbert W., and Shao Liu. "Feynman rules for simplicial gravity." Nuclear Physics B 472, no. 1-2 (July 1996): 447–77. http://dx.doi.org/10.1016/0550-3213(96)00216-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Christensen, Neil D., and Claude Duhr. "FeynRules – Feynman rules made easy." Computer Physics Communications 180, no. 9 (September 2009): 1614–41. http://dx.doi.org/10.1016/j.cpc.2009.02.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bounakis, Marios, and Gerasimos Rigopoulos. "Feynman rules for stochastic inflationary correlators." Journal of Cosmology and Astroparticle Physics 2020, no. 05 (May 26, 2020): 046. http://dx.doi.org/10.1088/1475-7516/2020/05/046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lawrie, I. D. "Feynman rules for nonequilibrium field theory." Journal of Physics A: Mathematical and General 25, no. 24 (December 21, 1992): 6493–505. http://dx.doi.org/10.1088/0305-4470/25/24/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Feynman rules"

1

Ghaderi, Hazhar. "Triangle Loop in Scalar Decay and Cutting Rules." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-212511.

Full text
Abstract:
In this report we will calculate the amplitude for a scalar-to-scalars (φ3  φ2φ2) decay which involves a triangle loop. We compute the real and imaginary part of the amplitude separately and will argue that this is much more straightforward and practical in this case rather than having to deal with or worry about branch cuts of logarithms. We will derive simple cutting rules closely related to the imaginary part of the amplitude. In doing this, we derive a formula that deals with expressions of the form δ[f(x,y)]δ[g(x,y)], containing two Dirac delta functions.
APA, Harvard, Vancouver, ISO, and other styles
2

Belhaj, Mohamed Mohamed. "Renormalisation dans les algèbres de HOPF graduées connexes." Thesis, Clermont-Ferrand 2, 2014. http://www.theses.fr/2014CLF22515/document.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à la renormalisation de Connes et Kreimer dans le contexe des algèbres de Hopf de graphes de Feynman spécifiés. Nous construisons une structure d'algèbre de Hopf $\mathcal{H}_\mathcal{T}$ sur l'espace des graphes de Feynman spécifié d'une théorie quantique des champs $\mathcal{T}$. Nous définissons encore un dédoublement $\wt\mathcal{D}_\mathcal{T}$ de la bigèbre de graphes de Feynman spécifiés, un produit de convolution \divideontimes et un groupe de caractères de cette algèbre de Hopf à valeurs dans une algèbre commutative qui prend en compte la dépendance en les moments extérieurs. Nous mettons en place alors la renormalisation décrite par A. Connes et D. Kreimer et la décomposition de Birkhoff pour deux schémas de renormalisation : le schéma minimal de renormalisation et le schéma de développement de Taylor. Nous rappelons la définition des intégrales de Feynman associées à un graphe. Nous montrons que ces intégrales sont holomorphes en une variable complexe D dans le cas des fonctions de Schwartz, et qu'elles s'étendent en une fonction méromorphe dans le cas des fonctions de types Feynman. Nous pouvons alors déterminer les parties finies de ces intégrales en utilisant l'algorithme BPHZ après avoir appliqué la procédure de régularisation dimensionnelle
In this thesis, we study the renormalization of Connes-Kreimer in the contex of specified Feynman graphs Hopf algebra. We construct a Hopf algebra structure $\mathcal{H}_\mathcal{T}$ on the space of specified Feynman graphs of a quantum field theory $\mathcal{T}$. We define also a doubling procedure for the bialgebra of specified Feynman graphs, a convolution product and a group of characters of this Hopf algebra with values in some suitable commutative algebra taking momenta into account. We then implement the renormalization described by A. Connes and D. Kreimer and the Birkhoff decomposition for two renormalization schemes: the minimal subtraction scheme and the Taylor expansion scheme.We recall the definition of Feynman integrals associated with a graph. We prove that these integrals are holomorphic in a complex variable D in the case oh Schwartz functions, and that they extend in a meromorphic functions in the case of a Feynman type functions. Finally, we determine the finite parts of Feynman integrals using the BPHZ algorithm after dimensional regularization procedure
APA, Harvard, Vancouver, ISO, and other styles
3

Sieg, Christoph. "Aspects of noncommutativity and holography in field theory and string theory." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2005. http://dx.doi.org/10.18452/15214.

Full text
Abstract:
Die Arbeit beschäftigt sich mit zwei Themen: den nichtkommutativen Yang-Mills-Theorien und der AdS/CFT-Korrespondenz. Im ersten Teil wird eine teilweise Aufsummation der theta-entwickelten Störungstheorie untersucht. Letztere stellt einen Weg dar, nichtkommutative Yang-Mills-Theorien mit beliebigen Eichgruppen G als Störungsentwicklung im Nichtkommutativitätsparameter theta zu definieren. Es wird gezeigt, daß man im Fall, daß G eine echte Untergruppe von U(N) ist, die ungleich einer U(M) ist (M
This thesis addresses two topics: noncommutative Yang-Mills theories and the AdS/CFT correspondence. In the first part we study a partial summation of the theta-expanded perturbation theory. The latter allows one to define noncommutative Yang-Mills theories with arbitrary gauge groups G as a perturbation expansion in the noncommutativity parameter theta. We show that for G being a subset of U(N) but not equal to U(M), M
APA, Harvard, Vancouver, ISO, and other styles
4

Ghaderi, Hazhar. "The Rare Decay of the Neutral Pion into a Dielectron." Thesis, Uppsala universitet, Kärnfysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-211683.

Full text
Abstract:
We give a rather self-contained introduction to the rare pion to dielectron decay which in nontrivial leading order is given by a QED triangle loop. We work within the dispersive framework where the imaginary part of the amplitude is obtained via the Cutkosky rules. We derive these rules in detail. Using the twofold Mellin-Barnes representation for the pion transition form factor, we derive a simple expression for the branching ratio B(π0  e+e-) which we then test for various models. In particular a more recent form factor derived from a Lagrangian for light pseudoscalars and vector mesons inspired by effective field theories. Comparison with the KTeV experiment at Fermilab is made and we find that we are more than 3σ below the KTeV experiment for some of the form factors. This is in agreement with other theoretical models, such as the Vector Meson Dominance model and the quark-loop model within the constituent-quark framework. But we also find that we can be in agreement with KTeV if we explore some freedom of the form factor not fixed by the low-energy Lagrangian.
APA, Harvard, Vancouver, ISO, and other styles
5

Chowdhury, Usman. "Cutting rules for Feynman diagrams at finite temperature." 2010. http://hdl.handle.net/1993/3856.

Full text
Abstract:
The imaginary part of the retarded self energy is of particular interest as it contains a lot of physical information about particle interactions. In higher order loop diagrams the calculation become extremely tedious and if we have to do the same at finite temperature, it includes an extra dimension to the difficulty. In such a condition we require to switch between bases and select the best basis for a particular diagram. We have shown in our calculation that in higher order loop diagrams, at #12;finite temperature, the R/A basis is most convenient on summing over the internal vertices and very efficient on calculating some particular diagrams while the result is most easily interpretable in the Keldysh basis for most other complex diagrams.
APA, Harvard, Vancouver, ISO, and other styles
6

Husain, Mohamed Amjad. "The [lambda phi] r theory : Feynman rules, renormalizability, regularization and renormalization." Thesis, 1986. http://spectrum.library.concordia.ca/5778/1/ML30693.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Francis, René M. "Gauge fields and Feynman rules in a fully left-right supersymmetric extension of the standard model." Thesis, 1989. http://spectrum.library.concordia.ca/3346/1/ML51350.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pnevmonidis, Pantelis. "Feynman rules and static quantities of the charged vector bosons in a left-right supersymmetric extension of the standard model." Thesis, 2002. http://spectrum.library.concordia.ca/1693/1/MQ68413.pdf.

Full text
Abstract:
The Standard Model is reviewed and its extension is proposed to incorporate left-right symmetry as well as supersymmetry. Model principles are developed to build a gauge theory with supersymmetry and the minimal supersymmetric extension of the Standard Model (MSSM) is briefly discussed. The left-right supersymmetric extension of the Standard Model is introduced and the symmetry-breaking pattern is described. The physical vector bosons, the charginos and neutralinos, and the Higgs particles are identified. The Lagrangian terms for the interactions of the vector bosons A, Z L , Z R , W L , W R amongst themselves as well as all corresponding Feynman rules are written down. The interaction Lagrangian terms with three fields are obtained at least one of which is the Photon A or a neutral vector boson Z L or Z R or a charged vector boson W L or W R . Feynamn rules are written down for interactions with three fields at least one of which is the Photon A, or a charged vector boson W L or W R . The Feynman rules are used in order to calculate the anomalous magnetic moments and quadrupole moments of the charged vector bosons W L or W R of the left-right supersymmetric extension of the Standard Model.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Feynman rules"

1

Veltman, Martinus. Diagrammatica: The path to Feynman rules. Cambridge: Cambridge University Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baulieu, Laurent, John Iliopoulos, and Roland Sénéor. Analyticity Properties of Feynman Diagrams. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788393.003.0020.

Full text
Abstract:
General discussion of the analyticity properties of Feynman diagrams. Cutting rules and the Cutkosky unitarity relations. Unstable particles and second sheet singularities. Dispersion relations and the Mandelstam representation. The analytic S-matrix theory and the bootstrap hypothesis.
APA, Harvard, Vancouver, ISO, and other styles
3

Kachelriess, Michael. Scalar field with λϕ4 interaction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198802877.003.0004.

Full text
Abstract:
The generating functionals Z[J] and W[J] for the λϕ‎4 theory are evaluated perturbatively and expressed through Feynman diagrams. The resulting Feynman rules are derived and the three basic one-loop diagrams of the λϕ‎4 theory are calculated. The main idea of renormalisation is illustrated using as example ϕϕ‎ → ϕϕ‎ scattering at O(λ‎2).
APA, Harvard, Vancouver, ISO, and other styles
4

Baulieu, Laurent, John Iliopoulos, and Roland Sénéor. The Euclidean Functional Integrals. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788393.003.0010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Baulieu, Laurent, John Iliopoulos, and Roland Sénéor. Applications. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788393.003.0013.

Full text
Abstract:
Physical applications. Introduction of the scattering amplitude and cross sections. The phase space integrals. Explicit calculations of QED processes in the tree approximation. Derivation of the Feynman rules for general field theories.
APA, Harvard, Vancouver, ISO, and other styles
6

Kachelriess, Michael. Gauge theories. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198802877.003.0010.

Full text
Abstract:
After reviewing electrodynamics as the special case of an abelian gauge theory, this local symmetry is generalised to non-abelian gauge theories. The curvature of space-time is introduced as analogue of the non-abelian field-strength. Non-abelian gauge theories are quantised using the Fadeev–Popov method and the resulting Feynman rules are derived.
APA, Harvard, Vancouver, ISO, and other styles
7

Baulieu, Laurent, John Iliopoulos, and Roland Sénéor. Relativistic Quantum Fields. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788393.003.0012.

Full text
Abstract:
The general formulation of quantum field theory. The Wightman axioms. The PCT and spin-statistics theorems. The assumption for the existence of asymptotic states. The reduction formulae and scattering theory. The Feynman rules for the S-matrix. Discussion for spin-12 and spin-1 particles. Applications to quantum electrodynamics. A formal expression for the S-matrix.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Feynman rules"

1

Stone, Michael. "Feynman Rules." In Graduate Texts in Contemporary Physics, 37–47. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-0507-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Scadron, Michael D. "Covariant Feynman Rules." In Advanced Quantum Theory, 183–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61252-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cline, James M. "The Feynman Rules." In SpringerBriefs in Physics, 11–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56168-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Álvarez-Gaumé, Luis, and Miguel Á. Vázquez-Mozo. "Towards Computational Rules: Feynman Diagrams." In An Invitation to Quantum Field Theory, 101–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23728-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Weinberg, Steven. "Feynman Rules for Any Spin." In Special Relativity and Quantum Theory, 130–44. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3051-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Greiner, Walter, and Joachim Reinhardt. "Summary: The Feynman Rules of QED." In Quantum Electrodynamics, 259–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05246-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Greiner, Walter, and Joachim Reinhardt. "Summary: The Feynman Rules of QED." In Quantum Electrodynamics, 169–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-97223-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Greiner, Walter, and Joachim Reinhardt. "Summary: The Feynman Rules of QED." In Quantum Electrodynamics, 221–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-88022-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ynduráin, Francisco J. "Relativistic Collisions in Field Theory. Feynman Rules. Decays." In Relativistic Quantum Mechanics and Introduction to Field Theory, 267–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61057-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, T. D. "Feynman rules of quantum chromodynamics inside a hadron." In Selected Papers, 174–91. Boston, MA: Birkhäuser Boston, 1986. http://dx.doi.org/10.1007/978-1-4612-5400-3_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Feynman rules"

1

Kreimer, Dirk, and Francis Brown. "Decomposing Feynman rules." In “Loops and Legs in Quantum Field Theory ” 11th DESY Workshop on Elementary Particle Physics. Trieste, Italy: Sissa Medialab, 2013. http://dx.doi.org/10.22323/1.151.0049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chauca, J., R. Doria, and W. Soares. "Feynman rules for a whole Abelian model." In THE SIXTH INTERNATIONAL SCHOOL ON FIELD THEORY AND GRAVITATION-2012. AIP, 2012. http://dx.doi.org/10.1063/1.4756984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Doria, Renato, and Mario Junior de Oliveira Neves. "Feynman rules for an intrinsic gauge model SU(N) x SU(N)." In 5th International School on Field Theory and Gravitation. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.081.0022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mithun, T., K. Porsezian, and Bishwajyoti Dey. "Bose-Einstein condensate in a rotating double-well potential: Hidden vortices and Feynman rule." In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4872508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography