Academic literature on the topic 'Fiber optic distributed temperature sensing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fiber optic distributed temperature sensing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fiber optic distributed temperature sensing"
OKAMOTO, Kazuhiro. "Special Issue on Fiber-Optics. Fiber-Optic Distributed-Temperature Sensing." Review of Laser Engineering 22, no. 4 (1994): 276–83. http://dx.doi.org/10.2184/lsj.22.276.
Full textRoman, Muhammad, Damilola Balogun, Yiyang Zhuang, Rex E. Gerald, Laura Bartlett, Ronald J. O’Malley, and Jie Huang. "A Spatially Distributed Fiber-Optic Temperature Sensor for Applications in the Steel Industry." Sensors 20, no. 14 (July 13, 2020): 3900. http://dx.doi.org/10.3390/s20143900.
Full textOrrell, Peter R. "DISTRIBUTED FIBRE OPTIC TEMPERATURE SENSING." Sensor Review 12, no. 2 (February 1992): 27–31. http://dx.doi.org/10.1108/eb007876.
Full textPan Liang, 潘亮, 刘琨 Liu Kun, 江俊峰 Jiang Junfeng, 马春宇 Ma Chunyu, 马鹏飞 Ma Pengfei, and 刘铁根 Liu Tiegen. "Distributed Fiber-Optic Vibration and Temperature Sensing System." Chinese Journal of Lasers 45, no. 1 (2018): 0110002. http://dx.doi.org/10.3788/cjl201845.0110002.
Full textThomas, Christoph K., Jannis-Michael Huss, Mohammad Abdoli, Tim Huttarsch, and Johann Schneider. "Solid-Phase Reference Baths for Fiber-Optic Distributed Sensing." Sensors 22, no. 11 (June 2, 2022): 4244. http://dx.doi.org/10.3390/s22114244.
Full textde Jong, S. A. P., J. D. Slingerland, and N. C. van de Giesen. "Fiber optic distributed temperature sensing for the determination of air temperature." Atmospheric Measurement Techniques Discussions 7, no. 6 (June 23, 2014): 6287–98. http://dx.doi.org/10.5194/amtd-7-6287-2014.
Full textde Jong, S. A. P., J. D. Slingerland, and N. C. van de Giesen. "Fiber optic distributed temperature sensing for the determination of air temperature." Atmospheric Measurement Techniques 8, no. 1 (January 15, 2015): 335–39. http://dx.doi.org/10.5194/amt-8-335-2015.
Full textDenney, Dennis. "Real-Time Fiber-Optic Distributed Temperature Sensing: Oilfield Applications." Journal of Petroleum Technology 59, no. 09 (September 1, 2007): 65–66. http://dx.doi.org/10.2118/0907-0065-jpt.
Full textCarpenter, Chris. "SAGD and Fiber-Optic Distributed Acoustic and Temperature Sensing." Journal of Petroleum Technology 68, no. 09 (September 1, 2016): 78–80. http://dx.doi.org/10.2118/0916-0078-jpt.
Full textBecker, Matthew W., Brian Bauer, and Adam Hutchinson. "Measuring Artificial Recharge with Fiber Optic Distributed Temperature Sensing." Groundwater 51, no. 5 (October 30, 2012): 670–78. http://dx.doi.org/10.1111/j.1745-6584.2012.01006.x.
Full textDissertations / Theses on the topic "Fiber optic distributed temperature sensing"
Liu, Bo. "Sapphire Fiber-based Distributed High-temperature Sensing System." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82741.
Full textPh. D.
Huang, Zhengyu. "Quasi-Distributed Intrinsic Fabry-Perot Interferometric Fiber Sensor for Temperature and Strain Sensing." Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/26247.
Full textPh. D.
Marruedo, Arricibita Amaya Irene. "Upscaling of Lacustrine Groundwater Discharge by Fiber Optic Distributed Temperature Sensing and Thermal Infrared imaging." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19365.
Full textLacustrine groundwater discharge (LGD) can have significant impacts on lake water quantity and quality. There is a need to understand LGD mechanisms and to improve measurement methods for LGD. Approaches to identify and quantify LGD are based on significant temperature differences between GW and lake water. The main goal of this PhD thesis is to trace heat signal propagation of LGD from the point scale at the sediment-water interface across the overlying water body to the water surface-atmosphere interface. The PhD thesis tests the hypothesis that the positive buoyancy of warm GW causes upwelling across the cold water column and allows detection of LGD at the water surface by thermal infrared imaging (TIR). First, a general conceptual framework is developed based on hierarchical patch dynamics (HPD). It guides researchers on adequately combining multiple heat tracing techniques to identify and quantify heat and water exchange over several spatial scales and ecohydrological interfaces (Chapter 2). Second, the conceptual framework is used for the design of a mesocosm experiment (Chapters 3 and 4). Different LGD rates were simulated by injecting relatively warm water at the bottom of an outdoor mesocosm. A fiber optic distributed temperature sensing (FO-DTS) cable was installed in a 3D setup in the water column to trace the heat signal of the simulated LGD under different weather conditions and over entire diurnal cycles. Finally, a TIR camera was mounted 4 meters above the mesocosm to monitor water surface temperatures. TIR images were validated using FO-DTS temperature data 2 cm below the water surface (Chapter 4). The positive buoyancy of relatively warm LGD allows the detection of GW across the water column and at the water surface-atmosphere interface by FO-DTS and TIR. Cloud cover and diurnal cycle of net radiation strongly control the upwelling of simulated LGD and the reliability of TIR for detection of LGD at the water surface-atmosphere interface. Optimal results are obtained under overcast conditions and during night.
Wang, Haichao. "A fibre optic system for distributed temperature sensing based on raman scattering." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5498.
Full textAllen, Emily. "Fiber Optic Distributed Temperature Sensing and Vadose Zone Measurements in Mini Anaheim Recharge Basin Orange County, California." Thesis, California State University, Long Beach, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10978729.
Full textManaged Aquifer Recharge (MAR) systems have become an increasingly important approach to the management of groundwater in Southern California in recent years. This thesis describes an experimental investigation of the vadose zone dynamics beneath a recharge basin used by the Orange County Water District. Soil moisture probes, pressure transducers, and fiber optic distributed temperature sensing (FODTS) at multiple depths beneath the basin were used to monitor infiltration. The purpose was to measure the diurnal temperature flux using heat as a tracer of infiltrating water to gain insight on the influence of basin stage (i.e., water level) on infiltration rate. To increase the temperature resolution from the standard 1 m, we installed a wrapped fiber optic cable at two locations using direct push technology. The wrapped FODTS cable was spliced to a trenched cable that ran laterally across the basin at depths of 30 cm and 1 m, installed during a previous experiment. The wrapped cable was then installed vertically at two locations to observe both the spatial distribution and vertical dynamics of fluid flow at 10 cm intervals. Propagation of the diurnal heat flux at the surface was related to water velocity. The infiltration behavior was affected by subtle changes in stratigraphy below the basin. The heat tracer suggests strong components of horizontal flow due to the presence of thin fine-grained hydrostratigraphic units. Water movement during initial saturation was particularly complex and suggested that simple one-dimensional vertical flow models will not accurately predict infiltration rates. The FODTS system provided high-resolution dynamic imaging of percolation that is not possible using a multi-level transducer system.
Ellis, Weston. "Determining Spatial and Temporal Variability of Percolation Rates from a River-Side Recharge Basin Using Fiber Optic Distributed Temperature Sensing." Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10743513.
Full textPercolation rates in Managed Aquifer Recharge (MAR) facilities, such as recharge basins and stream channels, can vary widely through both time and space. Natural variations in sediment hydraulic conductivity can create “dead zones” in which percolation rates are negligible. Clogging is a constant problem, leading to decays in facility percolation rates. Measuring percolation rate variations is important for management, maintenance, and remediation of surface MAR facilities.
We have used Fiber Optic Distributed Temperature Sensing (FODTS) to monitor percolation in a long narrow river channel separated from an active river by a levee. The alluvial sediment in the river channel varies widely in texture and water balance is difficult to monitor independently. The off-river channel was monitored by installing a fiber optic cable in the subsurface and measuring the propagation rate of the diurnal temperature oscillations carried downward with infiltrating water. In this way, heat was used as a tracer of percolation rates along the section defined by the 1800 meters of buried cable. We were able to confirm the FODTS measurements of percolation in the Off River Channel and demonstrate its wide applicability. Results from the measurements have been used to understand both the hydraulic behavior of percolation in the facilities and to make management decisions regarding facility operations and the potential need for additional surface sediment remediation.
Shen, Fabin. "UV-Induced Intrinsic Fabry-Perot Interferometric Fiber Sensors and Their Multiplexing for Quasi-Distributed Temperature and Strain Sensing." Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/28053.
Full textPh. D.
Reinsch, Thomas [Verfasser]. "Structural integrity monitoring in a hot geothermal well using fibre optic distributed temperature sensing / Thomas Reinsch." Clausthal-Zellerfeld : Universitätsbibliothek Clausthal, 2012. http://d-nb.info/1028623232/34.
Full textNützmann, Gunnar [Gutachter], Jörg [Gutachter] Lewandowski, and Jan [Gutachter] Fleckenstein. "Upscaling of Lacustrine Groundwater Discharge by Fiber Optic Distributed Temperature Sensing and Thermal Infrared imaging / Gutachter: Gunnar Nützmann, Jörg Lewandowski, Jan Fleckenstein." Berlin : Humboldt-Universität zu Berlin, 2018. http://d-nb.info/1185579257/34.
Full textDel, Val Alonso Laura. "Advancing in the characterization of coastal aquifers : a multimethodological approach based on fiber optics distributed temperature sensing." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/672709.
Full textUna caracterización detallada de los acuíferos costeros es esencial para la gestión de los recursos hídricos costeros, y en general de las zonas costeras. A pesar de su importancia, en general no existe un monitoreo sistemático de la zona de intrusión salina (SWI). Parte de esta carencia se debe a limitaciones en las herramientas y metodologías tradicionalmente empleadas. El objetivo de esta tesis es proporcionar nuevos enfoques y herramientas para la caracterización de los acuíferos costeros, y en particular de la SWI. Inicialmente, tres sistemas de monitoreo fueron testados en campo para caracterizar la SWI: Cross-Hole Electric Resistivity Tomography (CHERT), Time Laps Induction Logging (TLIL) and Fiber Optics Distribute Temperature Sensing (FO-DTS). Para poder operar las tres herramientas en paralelo, el cable de fibra óptica y los electrodos de la CHERT se instalaron entre el entubado y el sedimento. De este modo redujimos costes de instalación y mejoramos el proceso de caracterización con la combinación de información complementarias. De hecho, la combinación de las tres permitió´ detectar diferentes niveles y dinámicas de la SWI. De estas tres técnicas, nos hemos querido concentrar en explorar el uso de la FO-DTS para el monitoreo de acuíferos costeros. Sin embargo, antes de todo tuvimos que estudiar el uso de la temperatura como trazador de la SWI. A pesar de que los fundamentos del transporte de calor en agua subterránea están establecidos, el uso de la temperatura como trazador natural de la SWI es limitado. Para estudiar la SWI se han hecho dos modelos numéricos. De los resultados obtenidos surge un posible marco teórico para la interpretación de datos térmicos de la SWI. Usando la distribución vertical de temperaturas podríamos diferenciar niveles de SWI, la dirección de flujo, e incluso aproximar la velocidad del mismo. Con estos resultados llegamos a la conclusión de que el uso de la temperatura para el seguimiento de la SWI tiene todavía un gran potencial sin explorar. Basándonos en estos resultados testamos la FO-DTS para el monitoreo de la SWI en nuestro emplazamiento experimental durante un año y medio. Los datos obtenidos con la FO_DTS permitieron identificar la respuesta de la SWI a eventos a distintas escala temporales. De este modo, los datos confirmaron las conclusiones obtenidas con los modelos numéricos. La FO-DTS puede ser usada también de forma activa, es decir, calentando el cable de fibra óptica y midiendo el calentamiento y posterior enfriamiento. En la tesis proponemos una metodología activa de la FO-DTS para medir la velocidad del flujo de agua subterránea y estimar las propiedades térmicas del medio teniendo en cuenta el efecto del almacenamiento de calor en el cable. Los valores obtenidos concuerdan con estimaciones independientes. El método puede ser aplicado tanto para la caracterización del flujo de descarga al mar en acuíferos costeros, como en cualquier medio poroso saturado. Finalmente, se revisa la interpretación de los tradicionales ensayos de bombeo. De esta revisión surge proponer una alternativa para separar los descensos de los niveles medidos durante el bombeo, y filtrar el ruido. Esta metodología facilita y refuerza el uso de este tipo de ensayos en acuíferos costeros. La FO-DTS proporciona diferentes tipos de información sobre la SWI, lo que bien justifica profundizar en su estudio para poder generalizar su uso. Por otro lado, la revisión de métodos tradicionales, como los ensayos de bombeo, o de metodologías establecidas, como el uso de la temperatura como trazador, podrían beneficiarse de cierta revisión para adaptarlas a las condiciones especificas de los acuíferos costeros. En cualquier caso, el conjunto de métodos presentados en este documento expande las herramientas y resolución disponibles para la caracterización de la SWI en acuíferos costeros.
Books on the topic "Fiber optic distributed temperature sensing"
Carl, Bouvier, and United States. National Aeronautics and Space Administration., eds. X-33/RLV: Reusable cryogenic tank VHM using fiber optic distributed sensing technology. [Washington, DC: National Aeronautics and Space Administration, 1998.
Find full textCarl, Bouvier, and United States. National Aeronautics and Space Administration., eds. X-33/RLV: Reusable cryogenic tank VHM using fiber optic distributed sensing technology. [Washington, DC: National Aeronautics and Space Administration, 1998.
Find full textCarl, Bouvier, and United States. National Aeronautics and Space Administration., eds. X-33/RLV: Reusable cryogenic tank VHM using fiber optic distributed sensing technology. [Washington, DC: National Aeronautics and Space Administration, 1998.
Find full textValis, Tomas. Distributed fiber optic sensing based on counterpropagating waves. [S.l.]: [s.n.], 1989.
Find full text1947-, Dakin John, ed. The Distributed fibre optic sensing handbook. Kempston, Bedford, UK: IFS Publications, 1990.
Find full textThevenaz, Luc. Distributed Optical Fiber Sensing. Wiley & Sons, Incorporated, John, 2029.
Find full textAnders, George J., and Sudhakar Cherukupalli. Distributed Fiber Optic Sensing and Dynamic Rating of Power Cables. Wiley & Sons, Incorporated, John, 2019.
Find full textAnders, George J., and Sudhakar Cherukupalli. Distributed Fiber Optic Sensing and Dynamic Rating of Power Cables. Wiley & Sons, Limited, John, 2019.
Find full textAnders, George J., and Sudhakar Cherukupalli. Distributed Fiber Optic Sensing and Dynamic Rating of Power Cables. Wiley-IEEE Press, 2019.
Find full textAnders, George J., and Sudhakar Cherukupalli. Distributed Fiber Optic Sensing and Dynamic Rating of Power Cables. Wiley & Sons, Incorporated, John, 2019.
Find full textBook chapters on the topic "Fiber optic distributed temperature sensing"
Boiarski, A. A. "Distributed Fiber Optic Temperature Sensing." In Applications of Fiber Optic Sensors in Engineering Mechanics, 210–24. New York, NY: American Society of Civil Engineers, 1993. http://dx.doi.org/10.1061/9780872628953.ch14.
Full textWanser, Keith H., Michael Haselhuhn, and Michael Lafond. "High Temperature Distributed Strain and Temperature Sensing Using OTDR." In Applications of Fiber Optic Sensors in Engineering Mechanics, 194–209. New York, NY: American Society of Civil Engineers, 1993. http://dx.doi.org/10.1061/9780872628953.ch13.
Full textKapeller, Gerhard, Thomas Etzer, and Markus Aufleger. "Measurements of Hydraulic Subsurface Processes by Means of Distributed Fiber Optic Temperature Sensing (DTS)." In Landslide Science and Practice, 487–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31445-2_64.
Full textHenninges, Jan, and Ali Masoudi. "Fiber-Optic Sensing in Geophysics, Temperature Measurements." In Encyclopedia of Solid Earth Geophysics, 1–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-10475-7_281-1.
Full textHenninges, Jan, and Ali Masoudi. "Fiber-Optic Sensing in Geophysics, Temperature Measurements." In Encyclopedia of Solid Earth Geophysics, 384–94. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58631-7_281.
Full textReinsch, Thomas, Philippe Jousset, and Charlotte M. Krawczyk. "Fiber Optic Distributed Strain Sensing for Seismic Applications." In Encyclopedia of Solid Earth Geophysics, 1–5. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-10475-7_284-1.
Full textReinsch, Thomas, Philippe Jousset, and Charlotte M. Krawczyk. "Fiber Optic Distributed Strain Sensing for Seismic Applications." In Encyclopedia of Solid Earth Geophysics, 379–83. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58631-7_284.
Full textLienhart, Werner, Christoph M. Monsberger, and Fabian Buchmayer. "How to Make a Self-sensing House with Distributed Fiber Optic Sensing." In Lecture Notes in Civil Engineering, 718–26. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07322-9_72.
Full textOgawa, K., Y. Ozawa, H. Kawakami, T. Tsutsui, and S. Yamamoto. "A Fiber-Optic Distributed Temperature Sensor with High Distance Resolution." In Springer Proceedings in Physics, 544–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-75088-5_81.
Full textRogers, A. J. "New Methods for Distributed Optical-Fibre Measurement of Strain and Temperature in Large Structures." In Applications of Fiber Optic Sensors in Engineering Mechanics, 225–35. New York, NY: American Society of Civil Engineers, 1993. http://dx.doi.org/10.1061/9780872628953.ch15.
Full textConference papers on the topic "Fiber optic distributed temperature sensing"
Orrell, P. R. "Fiber optic distributed temperature sensing." In First European Conference on Smart Structures and Materials. SPIE, 1992. http://dx.doi.org/10.1117/12.2298054.
Full textHartog, Arthur H. "Progress in distributed fiber optic temperature sensing." In Environmental and Industrial Sensing, edited by Michael A. Marcus and Brian Culshaw. SPIE, 2002. http://dx.doi.org/10.1117/12.456092.
Full textAbeling, Joerg, Ulrich Bartels, Kamaljeet Singh, Shaktim Dutta, Gaurav Agrawal, and Apoorva Kumar. "Well Integrity Leak Diagnostic Using Fiber-Optic Distributed Temperature Sensing and Production Logging." In SPE Middle East Oil & Gas Show and Conference. SPE, 2021. http://dx.doi.org/10.2118/204557-ms.
Full textGifford, D. K. "Distributed fiber-optic temperature sensing using Rayleigh backscatter." In 31st European Conference on Optical Communications (ECOC 2005). IEE, 2005. http://dx.doi.org/10.1049/cp:20050584.
Full textInaudi, Daniele, and Branko Glisic. "Long-Range Pipeline Monitoring by Distributed Fiber Optic Sensing." In 2006 International Pipeline Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/ipc2006-10287.
Full textKaramehmedovic, Emir, and Ulrich Glombitza. "Fibre optic distributed temperature sensing using IOFDR." In Second European Workshop on Optical Fibre Sensors. SPIE, 2004. http://dx.doi.org/10.1117/12.566628.
Full textHveding, Frode, and Francisco Porturas. "Integrated Applications of Fiber-Optic Distributed Acoustic and Temperature Sensing." In SPE Latin American and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers, 2015. http://dx.doi.org/10.2118/177222-ms.
Full textMarcus, Michael A., Arthur H. Hartog, Connie F. Purdum, and Adrian P. Leach. "Real-Time Distributed Fiber-Optic Temperature Sensing In The Process Environment." In OE/FIBERS '89, edited by Robert A. Lieberman and Marek T. Wlodarczyk. SPIE, 1990. http://dx.doi.org/10.1117/12.963189.
Full textDutta, Shaktim, Kamaljeet Singh, Gaurav Agrawal, and Apoorva Kumar. "Unlocking the Potential of Fiber-Optic Distributed Temperature Sensing in Resolving Well Integrity Issues." In Offshore Technology Conference. OTC, 2021. http://dx.doi.org/10.4043/30990-ms.
Full textZaidi, Farhan, Tiziano Nannipieri, Marcelo A. Soto, Alessandro Signorini, Gabriele Bolognini, and Fabrizio Di Pasquale. "Hybrid Raman/FBG-based Sensing for Simultaneous Point Dynamic Strain and Distributed Temperature Measurement." In National Fiber Optic Engineers Conference. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/nfoec.2012.jw2a.26.
Full textReports on the topic "Fiber optic distributed temperature sensing"
Quinn, Meghan. Geotechnical effects on fiber optic distributed acoustic sensing performance. Engineer Research and Development Center (U.S.), July 2021. http://dx.doi.org/10.21079/11681/41325.
Full textJuntao Wu. Distributed Fiber Optic Gas Sensing for Harsh Environment. Office of Scientific and Technical Information (OSTI), March 2008. http://dx.doi.org/10.2172/938805.
Full textBecker, Matthew. Phase I Project: Fiber Optic Distributed Acoustic Sensing for Periodic Hydraulic Tests. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1430694.
Full textKennedy, Jermaine L. Fiber-Optic Sensor with Simultaneous Temperature, Pressure, and Chemical Sensing Capabilities. Office of Scientific and Technical Information (OSTI), March 2009. http://dx.doi.org/10.2172/949037.
Full textBruno, Michael S., Kang Lao, Nicky Oliver, and Matthew Becker. Use of Fiber Optic Distributed Acoustic Sensing for Measuring Hydraulic Connectivity for Geothermal Applications. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1434494.
Full textIchinose, G., and R. Mellors. Seismic Array Analysis Using Fiber-Optic Distributed Acoustic Sensing on Small Local and Regional Earthquakes. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1818399.
Full textChallener, William. Multipoint Pressure and Temperature Sensing Fiber Optic Cable for Monitoring CO2 Sequestration. Office of Scientific and Technical Information (OSTI), February 2015. http://dx.doi.org/10.2172/1170208.
Full textRomano, Nicholas, Forest Banks, Charlotte Rowe, Neill Symons, Agatha Podrasky, and David Podrasky. Distributed Acoustic Sensing (DAS) on Opportunistic Networks_ A Feasibility Study Utilizing Fiber Optic Infrastructure at NEON Sites for DAS. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1669083.
Full textTsvetkov, Pavel, Bryan Dickerson, Joseph French, Donald McEachern, and Abderrafi Ougouag. A Distributed Fiber Optic Sensor Network for Online 3-D Temperature and Neutron Fluence Mapping in a VHTR Environment. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1150754.
Full textWang, Xingwei, Chengyu Cao, and Xinsheng Lou. Distributed fiber sensing systems for 3D combustion temperature field monitoring in coal-fired boilers using optically generated acoustic waves. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1507128.
Full text