Academic literature on the topic 'Fiber Reinforced Cementitious Matrix (FRCM)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fiber Reinforced Cementitious Matrix (FRCM).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fiber Reinforced Cementitious Matrix (FRCM)"
Incerti, Andrea, Mattia Santandrea, Christian Carloni, and Claudio Mazzotti. "Destructive In Situ Tests on Masonry Arches Strengthened with FRCM Composite Materials." Key Engineering Materials 747 (July 2017): 567–73. http://dx.doi.org/10.4028/www.scientific.net/kem.747.567.
Full textD'Antino, Tommaso, Carlo Pellegrino, Christian Carloni, Lesley H. Sneed, and Giorgio Giacomin. "Experimental Analysis of the Bond Behavior of Glass, Carbon, and Steel FRCM Composites." Key Engineering Materials 624 (September 2014): 371–78. http://dx.doi.org/10.4028/www.scientific.net/kem.624.371.
Full textBilotta, Antonio, and Gian Piero Lignola. "Effects of Defects on Bond Behavior of Fiber Reinforced Cementitious Matrix Materials." Materials 13, no. 1 (January 1, 2020): 164. http://dx.doi.org/10.3390/ma13010164.
Full textD'Antino, Tommaso, Francesca Giulia Carozzi, Pierluigi Colombi, and Carlo Poggi. "A New Pull-Out Test to Study the Bond Behavior of Fiber Reinforced Cementitious Composites." Key Engineering Materials 747 (July 2017): 258–65. http://dx.doi.org/10.4028/www.scientific.net/kem.747.258.
Full textAl-Lami, Karrar, Tommaso D’Antino, and Pierluigi Colombi. "Durability of Fabric-Reinforced Cementitious Matrix (FRCM) Composites: A Review." Applied Sciences 10, no. 5 (March 2, 2020): 1714. http://dx.doi.org/10.3390/app10051714.
Full textGonzalez-Libreros, Jaime, Tommaso D'Antino, and Carlo Pellegrino. "Experimental Behavior of Glass-FRCM Composites Applied onto Masonry and Concrete Substrates." Key Engineering Materials 747 (July 2017): 390–97. http://dx.doi.org/10.4028/www.scientific.net/kem.747.390.
Full textBlikharskyy, Z., K. Brózda, and J. Selejdak. "Effectivenes of Strengthening Loaded RC Beams with FRCM System." Archives of Civil Engineering 64, no. 3 (September 1, 2018): 3–13. http://dx.doi.org/10.2478/ace-2018-0025.
Full textSantandrea, Mattia, Gilda Daissè, Claudio Mazzotti, and Christian Carloni. "An Investigation of the Debonding Mechanism between FRCM Composites and a Masonry Substrate." Key Engineering Materials 747 (July 2017): 382–89. http://dx.doi.org/10.4028/www.scientific.net/kem.747.382.
Full textSantandrea, Mattia, Giovanni Quartarone, Christian Carloni, and Xiang Lin Gu. "Confinement of Masonry Columns with Steel and Basalt FRCM Composites." Key Engineering Materials 747 (July 2017): 342–49. http://dx.doi.org/10.4028/www.scientific.net/kem.747.342.
Full textCarloni, Christian, Claudio Mazzotti, Marco Savoia, and Kolluru V. Subramaniam. "Confinement of Masonry Columns with PBO FRCM Composites." Key Engineering Materials 624 (September 2014): 644–51. http://dx.doi.org/10.4028/www.scientific.net/kem.624.644.
Full textDissertations / Theses on the topic "Fiber Reinforced Cementitious Matrix (FRCM)"
Zucchini, Lorenzo. "Experimental analysis of fiber reinforced cementitious matrix (FRCM) confined masonry columns." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amslaurea.unibo.it/2667/.
Full textQuartarone, Giovanni. "Confinement of masonry columns with Steel Fiber Reinforced Cementitious Matrix (S-FRCM) composites." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Find full textCozza, Alessandro. "Bond properties of SRG anchors employed to improve the effectiveness of SRG/FRCM composites." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textErrico, Carmine. "Determination of the influence of SRG anchors on the bond behavior of SRG/FRCM strips bonded to a quasi-brittle substrate." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textJung, Hyunchul. "Blast Retrofit of Unreinforced Masonry Walls Using Fabric Reinforced Cementitious Matrix (FRCM) Composites." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40530.
Full textJones, Mark Stevens. "Repair of Impact-Damaged Prestressed Bridge Girders Using Strand Splices and Fabric Reinforced Cementitious Matrix." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/76648.
Full textMaster of Science
Perez, Garcia Ramon. "Increasing the Blast Resistance of Concrete Masonry Walls Using Fabric Reinforced Cementitious Matrix (FRCM) Composites." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42095.
Full textMartínez, Salazar María Fernanda. "Guía para el diseño de refuerzos de elementos estructurales de hormigón armado mediante material compuesto por mallas de fibras minerales embebidas en matriz cementícea (FRCM)." Tesis, Universidad de Chile, 2016. http://repositorio.uchile.cl/handle/2250/139463.
Full textLas tecnologías para la rehabilitación de estructuras dañadas resultan de especial relevancia en países sísmicos. En el caso de estructuras frágiles de hormigón armado y de albañilería se han estudiado diferentes sistemas de reparación estructural, en busca de un refuerzo cuyas propiedades sean compatibles con las del sustrato y que restituyan la integridad y recuperen o aumenten de buena manera la capacidad portante de los elementos. El objetivo principal del presente trabajo de título consiste en el estudio de la metodología de diseño de uno de estos sistemas de refuerzo, sistema conocido como FRCM*. Este tipo de refuerzo es un material compuesto, constituido por aglomerante cementíceo como matriz y malla de fibras minerales como refuerzo, el cual se adhiere externamente a los elementos de hormigón armado, con mínima alteración arquitectónica. Este sistema de refuerzo es considerado como una solución prometedora para la recuperación de estructuras dañadas. En este trabajo se realiza primeramente una revisión bibliográfica de manera de contextualizar los avances y las principales características del refuerzo y comparar con el método actualmente en uso, refuerzo conocido como FRP**, variante del cual surge el desarrollo del FRCM. Uno de los objetivos de esta memoria es el estudio la precisión del método de diseño, que se realiza a partir de las disposiciones que establece el manual de diseño ACI 549, para elementos representativos de vigas y columnas a partir de resultados experimentales obtenidos de estudios de laboratorios de otros autores. De estos análisis comparativos se concluye que la norma de diseño cuantifica de manera conservadora los aumentos de capacidad de los elementos. Como aplicación de la metodología a un caso práctico, se estudia el diseño del refuerzo FRCM para una estructura real, que ha sufrido deterioro en su manto, con agrietamiento y deslaminación. Se trata de una chimenea de hormigón armado perteneciente a una termoeléctrica de carbón, ubicada en Ventanas, V región. Se propone realizar la consolidación del manto exterior, lo que permite llevar la estructura a su estado original, recuperando la capacidad estructural y prolongando su período de servicio. *FRCM: Fabric Reinforced Cementitious Matrix **FRP: Fiber Reinforced Polymer
Campanini, Davide. "Comparison between Direct Tensile and Single Lap Shear for FRCM/SRG composites." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17203/.
Full textSong, Gao. "Matrix manipulation to study ECC behaviour." Thesis, Stellenbosch : University of Stellenbosch, 2005. http://hdl.handle.net/10019.1/4647.
Full text192 leaves on CD format, preliminary i-xii pages and numbered pages 1-135. Includes bibliography, list of figures and tables.
ENGLISH ABSTRACT: As a fibre reinforced material, engineered cementitious composite (ECC) has tough, strain-hardening behaviour in tension despite containing low volumes of fibres. This property can be brought about by developments in fibre, matrix and interfacial properties. Poly Vinyl Alcohol (PVA) fibre has been developed in recent years for ECC, due to its high tensile strength and elasticity modulus. However, the strong interfacial bond between fibre surface and matrix is a challenge for its application. This study focuses on the tailoring of matrix and fibre/matrix interfacial properties by cement replacement with fly ash (FA) and Ground Granulated Corex Slagment (GGCS). In this study the direct tensile test, three point bending test, micro-scale analysis, such as X-Ray Fluorescence Spectrometry analysis (XRF), Scanning Electron Microscope (SEM), are employed to investigate the influence of cement replacement, aging, Water/Binder (W/B) ratio, workability on ECC behaviour. This study has successfully achieved the aim that cement replacement by FA and GGCS helps to improve the fibre/matrix interfacial properties and therefore enhances the ECC tensile behaviour. Specifically, a high volume FA-ECC has stable high tensile strain capacity at the age of 21 days. This enables a constant matrix design for the investigation of other matrix influences. The Slag-ECC has a higher tensile strength but lower tensile strain capacity. The combination of FA and GGCS, moderate tensile strength and strain capacity is achieved Both tensile tests and Micro-scale analyses infer that the high volume FA-ECC has an adhesive type fibre/matrix interfacial interaction, as opposed to the cohesive type of normal PVA fibre-ECC. The different tensile behaviour trend of steel fibre-ECC and PVA fibre-ECC with the FA content is presented and discussed in this research. The investigations of aging influence indicate that the high volume FA-ECC has a beneficial effect on the properties of the composite at an early stage. However, at a high age, it has some difficulty to undergo multiple cracking and then leads to the reduction of tensile strain capacity. The modified mix design is made with the combination of FA and GGCS, which successfully increases the interfacial bond and, thereby, improves the shear transfer to reach the matrix crack strength. Therefore, an improved high age tensile behaviour is achieved. The W/B and fresh state workability influence investigations show that the W/B can hardly affect the tensile strain at early age. However, the workability influences on composite tensile strain significantly, because of the influence on fibre dispersion. Other investigations with regard to the hybrid fibre influences, the comparison of bending behaviours between extruded plate and cast plate, the relation between bending MOR and tensile stress, and the relation between compression strength and tensile strength contribute to understand ECC behaviour.
AFRIKAANSE OPSOMMING: As ‘n veselversterkte materiaal, het ontwerpte sementbasis saamgestelde materiale, taai vervormingsverhardingseienskappe in trek, ten spyte van lae veselinhoud. Hierdie eienskap word bewerkstellig, deur ontwikkelings in vesel, matriks en tussenveselbindingseienskappe. Poli-Viniel Alkohol (PVA) vesels is ontwikkel vir ECC, as gevolg van die hoë trekkrag en hoë modulus van hierdie veseltipe. Die sterk binding tussen die PVA-veseloppervlak en die matriks is egter ‘n uitdaging vir sy toepassing. Hierdie studie fokus op die skep van gunstige matriks en vesel/matriks tussenvesel-bindingseienskappe deur sement te vervang met vlieg-as (FA) en slagment (GGCS).In hierdie navorsing is direkte trek-toetse, drie-punt-buigtoetse, mikro-skaal analise (soos die X-straal ‘Fluorescence Spectrometry’ analise (XRF) en Skanderende Elektron Mikroskoop (SEM))toegepas. Hierdie metodes is gebruik om die invloed van sementvervanging,veroudering, water/binder (W/B)-verhouding en werkbaarheid op die meganiese gedrag van ECC te ondersoek.Die resultate van hierdie navorsing toon dat sementvervanging deur FA en GGCS help om die vesel/matriks tussenveselbindingseienskappe te verbeter. Dus is die ECC-trekgedrag ook verbeter. Veral ‘n hoë volume FA-ECC het stabiele hoë trekvervormingskapasiteit op ‘n ouderdom van 21 dae. Dit bewerkstellig ‘n konstante matriksontwerp vir die navorsing van ander matriks invloede. Die Slag-ECC het ‘n hoër treksterkte, maar laer trekvervormingskapasiteit. Deur die kombinasie van FA en GGCS word hoë treksterkte, sowel as gematigde vervormbaarheid in trek verkry. Beide trektoetse en mikro-skaal analise dui aan dat die hoë volume FA-ECC ‘n adhesie-tipe vesel/matriks tussenvesel-bindingsinteraksie het, teenoor die ‘kohesie-tipe van normale PVA vesel-ECC. Die verskille in trekgedrag van staalvesel-ECC en PVA vesel-ECC ten opsigte van die FA-inhoud is ondersoek en word bespreek in die navorsing. Die navorsing toon verder dat die hoë volume FA-ECC goeie meganiese eienskappe het op ‘n vroeë ouderdom. Op hoër ouderdom word minder krake gevorm, wat ‘n verlaging in die trekvervormingskapasiteit tot gevolg het. Met die kombinasie van FA en GGCS, word die vesel-matriksverband verhoog, waardeur ‘n verbetering in die skuifoordrag tussen vesel en matriks plaasvind. Verbeterde hoë omeganiese gedrag word daardeur tot stand gebring. Navorsing ten opsigte van die invoed van die W/B en werkbaarheid dui daarop dat die W/B slegs geringe invloed het op die trekvormbaarheid, terwyl die werkbaarheid ‘n dominerende rol speel in hierdie verband.Verdere studies sluit in die invloed van verskillende vesels, die vergelyking van die buigingsgedrag van geëkstueerde plate en gegote plate, die verhouding tussen buigsterkte en treksterkte, en die verhouding tussen druksterkte en treksterkte dra by tot beter begrip van die gedrag van ECC.
Book chapters on the topic "Fiber Reinforced Cementitious Matrix (FRCM)"
Carloni, Christian, Dionysios A. Bournas, Francesca G. Carozzi, Tommaso D’Antino, Giulia Fava, Francesco Focacci, Giorgio Giacomin, et al. "Fiber Reinforced Composites with Cementitious (Inorganic) Matrix." In Design Procedures for the Use of Composites in Strengthening of Reinforced Concrete Structures, 349–92. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7336-2_9.
Full textCarozzi, F. G., T. D’Antino, A. Gatti, G. Mantegazza, and C. Poggi. "Characterization of Fabric Reinforced Cementitious Matrix (FRCM) Composites for Structural Retrofitting." In Lecture Notes in Civil Engineering, 235–47. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23748-6_18.
Full textMihashi, Hirozo. "Tension Softening Diagram and Mechanical Behavior of Fiber Reinforced Cementitious Composite Materials." In Brittle Matrix Composites 3, 111–20. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3646-4_12.
Full textChin, C. S., and R. Y. Xiao. "Experimental and Nonlinear Finite Element Analysis of Fiber-Cementitious Matrix Bond-Slip Mechanism." In High Performance Fiber Reinforced Cement Composites 6, 145–52. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2436-5_18.
Full textde Souza Castoldi, Raylane, Lourdes Maria Silva de Souza, and Flávio de A. Silva. "Effect of Alkali Treatment to Improve Fiber-Matrix Bonding and Mechanical Behavior of Sisal Fiber Reinforced Cementitious Composites." In RILEM Bookseries, 51–60. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83719-8_5.
Full textParisi, Fulvio, Costantino Menna, and Andrea Prota. "Fabric-Reinforced Cementitious Matrix (FRCM) composites." In Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, 199–227. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-08-102293-1.00010-3.
Full text"Fiber Reinforced Cementitious Matrix (FRCM)-advanced composite material and emerging technology for retrofitting concr." In Advances in Bridge Maintenance, Safety Management, and Life-Cycle Performance, Set of Book & CD-ROM, 1109–10. CRC Press, 2015. http://dx.doi.org/10.1201/b18175-461.
Full textRanjbarian, Majid, and Viktor Mechtcherine. "Cyclic Damage to PVA Microfibre Embedded in Cementitious Matrix in Alternating Tension-Compression Regime." In fib Bulletin 95. Fibre Reinforced Concrete: From Design to Structural Applications, 321–29. fib. The International Federation for Structural Concrete, 2020. http://dx.doi.org/10.35789/fib.bull.0095.ch33.
Full textTrimboli, A., G. Mantegazza, M. Tommasini, and E. Cerasi. "The strengthening of mansonry structures through the combined use of the joint resealing and Fabric Reinforced Cementitious Matrix (FRCM) systems: The case study of the Abbazia di San Paolo Fuori le Mura in Rome." In Brick and Block Masonry, 2167–74. CRC Press, 2016. http://dx.doi.org/10.1201/b21889-268.
Full textConference papers on the topic "Fiber Reinforced Cementitious Matrix (FRCM)"
Elghazy, Mohammed, Ahmed El Refai, Usama A. Ebead, and Antoni Nanni. "Performance of Corrosion-Aged Reinforced Concrete (RC) Beams Rehabilitated with Fabric-Reinforced Cementitious Matrix (FRCM)." In Fourth International Conference on Sustainable Construction Materials and Technologies. Coventry University, 2016. http://dx.doi.org/10.18552/2016/scmt4s270.
Full textMoceiki, Rimvydas, Asta Kičaitė, and Gintautas Skripkiūnas. "Effect of aggregate particle shape and granulometry on the workability and mechanical properties of glass reinforced concrete." In The 13th international scientific conference “Modern Building Materials, Structures and Techniques”. Vilnius Gediminas Technical University, 2019. http://dx.doi.org/10.3846/mbmst.2019.002.
Full textAljazaeri, Zena R., and John J. Myers. "Strengthening of reinforced concrete beams in shear with fiber reinforced cementitious matrix." In International Conference on Performance-based and Life-cycle Structural Engineering. School of Civil Engineering, The University of Queensland, 2015. http://dx.doi.org/10.14264/uql.2016.762.
Full textYu, Jing, Lingshi Meng, and Christopher Leung. "Pull-out Response of Single Steel Fiber Embedded in PVA Fiber Reinforced Cementitious Matrix." In 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures. IA-FraMCoS, 2016. http://dx.doi.org/10.21012/fc9.021.
Full textMohammad, Rebin, and Ashraf Ayoub. "Behavior of Fiber Reinforced Cementitious Matrix Elements under Combined Thermo-Mechanical Loads." In Structures Congress 2019. Reston, VA: American Society of Civil Engineers, 2019. http://dx.doi.org/10.1061/9780784482247.025.
Full textKabele, P. "Effects of chemical exposure on bond between synthetic fiber and cementitious matrix." In ICTRC'2006 - 1st International RILEM Conference on Textile Reinforced Concrete. RILEM Publications SARL, 2006. http://dx.doi.org/10.1617/2351580087.009.
Full textOkten, Mehmet Selim, Cemil Ozkan, Mustafa Gencoglu, and Kadir Guler. "Shear Strength Behavior Of Infill Walls Strengthened By Carbon Fiber Reinforced Cementitious Matrix." In The Seventh International Structural Engineering and Construction Conference. Singapore: Research Publishing Services, 2013. http://dx.doi.org/10.3850/978-981-07-5354-2_st-151-467.
Full textMercedes, Luis, Lluis Gil, and Ernest Bernat. "Comportamiento mecánico de compuestos de matriz cementicia y tejidos de fibras vegetales." In HAC2018 - V Congreso Iberoamericano de Hormigón Autocompactable y Hormigones Especiales. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/hac2018.2018.5501.
Full textNault, Gregory, and Eric Samson. "UHPC: a Durable Concrete Overlay Solution for Bridge Decks." In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.1613.
Full text