Academic literature on the topic 'Fiber Reinforced Cementitious Matrix (FRCM)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fiber Reinforced Cementitious Matrix (FRCM).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fiber Reinforced Cementitious Matrix (FRCM)"

1

Incerti, Andrea, Mattia Santandrea, Christian Carloni, and Claudio Mazzotti. "Destructive In Situ Tests on Masonry Arches Strengthened with FRCM Composite Materials." Key Engineering Materials 747 (July 2017): 567–73. http://dx.doi.org/10.4028/www.scientific.net/kem.747.567.

Full text
Abstract:
In the last few decades, fiber reinforced polymer (FRP) composites have been widely employed in several strengthening and rehabilitation applications of existing masonry buildings. Fiber reinforced cementitious matrix (FRCM) composites are a newly-developed strengthening technique comprised of high strength fibers embedded in a cementitious matrix. FRCMs usually offer several advantages such as the high resistance to fire and high temperatures or vapor permeability with masonry substrate, therefore they appear to be a promising alternative to traditional FRP strengthening systems. In this experimental work, the results of destructive in situ tests performed on existing masonry arches strengthened with FRCM composites are reported. FRCM strips consist of a balanced bi-axial mesh made of basalt fibers embedded in a cementitious grout. Three different configurations of the strengthening system have been considered. Load responses and failure modes are presented.
APA, Harvard, Vancouver, ISO, and other styles
2

D'Antino, Tommaso, Carlo Pellegrino, Christian Carloni, Lesley H. Sneed, and Giorgio Giacomin. "Experimental Analysis of the Bond Behavior of Glass, Carbon, and Steel FRCM Composites." Key Engineering Materials 624 (September 2014): 371–78. http://dx.doi.org/10.4028/www.scientific.net/kem.624.371.

Full text
Abstract:
In recent decades, the construction industry has witnessed a rapid growth of interest in strengthening and retrofitting of existing reinforced concrete (RC) and masonry structures. Fiber reinforced polymer (FRP) composites have gained great popularity, and several studies are now available in the literature on their use in strengthening and retrofit applications. Promising newly-developed composite materials are represented by the so-called fiber reinforced cementitious matrix (FRCM) composites. FRCM composites are comprised of high strength fibers embedded within a cementitious matrix that is responsible for the stress transfer between the existing structure and the strengthening material. FRCM composites are still in their infancy, and very limited results are available in the literature on RC and masonry strengthening applications. This study presents an experimental campaign conducted on different FRCM composites comprised of glass, carbon, or steel fibers embedded within two different cementitious matrices and applied to concrete prisms. The single-lap direct-shear test was used to study the stress-transfer mechanism between the FRCM composite and the concrete substrate. Two different composite bonded lengths were investigated. Debonding occurred at the matrix-fiber interface for some of the composites tested and at the concrete-matrix interface for others. This work contributes to the study of the bond behavior of FRCM composites, which represents a key issue for the effectiveness of FRCM composite strengthening.
APA, Harvard, Vancouver, ISO, and other styles
3

Bilotta, Antonio, and Gian Piero Lignola. "Effects of Defects on Bond Behavior of Fiber Reinforced Cementitious Matrix Materials." Materials 13, no. 1 (January 1, 2020): 164. http://dx.doi.org/10.3390/ma13010164.

Full text
Abstract:
High-strength fibers embedded in inorganic matrix i.e., Fiber Reinforced Cementitious Mortar materials (FRCM) are commonly used as strengthening technique for existing masonry structures, due to the low sensitivity to debonding phenomena between substrate and matrix. Nevertheless, the use of lime or cement-based matrix instead of epoxy adhesive implies that attention has to be paid to the bond behavior between the fibers and the matrix, since sliding phenomena and cohesive failures in the mortar matrix can occur. The paper aims to investigate the effect of the mechanical properties of fiber and matrix on the FRCM efficiency, and potential geometrical defects, typical of real applications. The aim is to analyze the mechanical behavior of the FRCM system by simulating hypothetical bond tests, as they are usually performed in laboratories. The bond test has a significant role, as it is used for the qualification of the material, providing sometimes very scattered results. Hence, it is particularly important and greatly discussed in the scientific community and among manufactures and practitioners. The purpose is to understand where this variability could derive from and possibly how to contain it, to improve the characterization of FRCM systems. A mechanical model has been proposed to simulate the usual bond test to focus and stress the way in which each fiber slips out of the matrix as the load increases; and this has been recognized as the main reason for scattered results in bond tests. The model was then applied to the typical cases of PBO-FRCM and Glass-FRCM, hence considering different ratios for the fiber and matrix properties.
APA, Harvard, Vancouver, ISO, and other styles
4

D'Antino, Tommaso, Francesca Giulia Carozzi, Pierluigi Colombi, and Carlo Poggi. "A New Pull-Out Test to Study the Bond Behavior of Fiber Reinforced Cementitious Composites." Key Engineering Materials 747 (July 2017): 258–65. http://dx.doi.org/10.4028/www.scientific.net/kem.747.258.

Full text
Abstract:
Fiber reinforced cementitious matrix (FRCM) composites are gaining increasing popularity in the civil engineering community. FRCM composites are comprised of high-strength fiber textiles embedded within inorganic matrices that are responsible for the stress-transfer mechanism between the composite and the substrate. Failure of FRCM composites including one layer of textile is generally reported to be debonding of the fibers from the embedding matrix. Therefore, the bond behavior of the matrix-fiber interface is of critical importance for these types of composites.This paper presents the results of an experimental campaign carried out to investigate the bond behavior of an FRCM composite comprising PBO fibers. Specimens were tested using a newly-developed pull-out test set-up. The results obtained are compared with those obtained by different authors on single-lap direct-shear tests with the same FRCM composite.
APA, Harvard, Vancouver, ISO, and other styles
5

Al-Lami, Karrar, Tommaso D’Antino, and Pierluigi Colombi. "Durability of Fabric-Reinforced Cementitious Matrix (FRCM) Composites: A Review." Applied Sciences 10, no. 5 (March 2, 2020): 1714. http://dx.doi.org/10.3390/app10051714.

Full text
Abstract:
Strengthening and rehabilitation of masonry and concrete structures by means of externally bonded fabric-reinforced cementitious matrix (FRCM) (also referred to as textile reinforced mortar (TRM)) composites was proposed as an alternative to the use of fiber-reinforced polymer (FRP) composites due to their good mechanical properties and compatibility with the substrate. However, quite limited studies are available in the literature regarding the long-term behavior of FRCM composites with respect to different environmental conditions. This paper presents a thorough review of the available researches on the long-term behavior of FRCM composites. Namely, (i) test set-ups employed to study the FRCM durability, (ii) conditioning environments adopted, and (iii) long-term performance of FRCM and its component materials (mortar and fiber textile) subjected to direct tensile and bond tests, are presented and discussed. Based on the available results, some open issues that need to be covered in future studies are pointed out.
APA, Harvard, Vancouver, ISO, and other styles
6

Gonzalez-Libreros, Jaime, Tommaso D'Antino, and Carlo Pellegrino. "Experimental Behavior of Glass-FRCM Composites Applied onto Masonry and Concrete Substrates." Key Engineering Materials 747 (July 2017): 390–97. http://dx.doi.org/10.4028/www.scientific.net/kem.747.390.

Full text
Abstract:
The use of Fiber Reinforced Polymer (FRP) composites has become a popular solution for retrofitting and strengthening of existing concrete and masonry structures. However, some drawbacks of this technique, mainly associated with the use of organic resins, have been reported. To overcome such drawbacks, the development of composite materials in which the organic resins are replaced with inorganic matrices has recently caught the attention of the civil engineering industry. Among these newly developed systems, Fiber Reinforced Cementitious Matrix (FRCM) composites, which are comprised of high strength fibers embedded within an inorganic matrix, have shown promising results. However, research on this topic is still limited and important aspects, such as the bond behavior between the composite and the substrate, are not fully understood and require further study. This paper presents the results of an experimental campaign aimed at investigating the influence of the type of matrix and substrate on the bond behavior of FRCM composites. Glass-FRCM composite strips were applied onto concrete and masonry substrates and then tested by means of a classical push-pull single-lap direct-shear test set-up. A cementitious and a lime-based matrix were employed to apply the same type of fiber on concrete and masonry substrates, respectively. FRCM-concrete and FRCM-masonry joints reported the same failure mode. However, higher values of the peak load were obtained for the lime-based glass-FRCM composite applied onto masonry substrates than with the cementitious glass-FRCM composite applied onto concrete substrates.
APA, Harvard, Vancouver, ISO, and other styles
7

Blikharskyy, Z., K. Brózda, and J. Selejdak. "Effectivenes of Strengthening Loaded RC Beams with FRCM System." Archives of Civil Engineering 64, no. 3 (September 1, 2018): 3–13. http://dx.doi.org/10.2478/ace-2018-0025.

Full text
Abstract:
AbstractThe composite materials as FRP (Fiber Reinforced Polymers), which are characterized by benefits resulting from the combination of high strength reinforcement (as carbon, glass, steel or aramid fibers) with synthetic matrix are increasingly used to reinforce existing structures. Reinforcing System as FRCM (Fibre Reinforced Cementitious Matrix), which includes, among others, Ruredil X Mesh Gold System, is much less commonly used. However, the uniform and practical methods for calculating composite reinforced structures are not determined. Especially when considering the real conditions of structure exploitation, which requires further research in this field. In the paper the initial loading level influence on the efficiency of reinforced concrete beams strengthen using system Ruredil X Mesh Gold was investigated.
APA, Harvard, Vancouver, ISO, and other styles
8

Santandrea, Mattia, Gilda Daissè, Claudio Mazzotti, and Christian Carloni. "An Investigation of the Debonding Mechanism between FRCM Composites and a Masonry Substrate." Key Engineering Materials 747 (July 2017): 382–89. http://dx.doi.org/10.4028/www.scientific.net/kem.747.382.

Full text
Abstract:
Fiber reinforced cementitious matrix (FRCM) composites have recently become a hot topic in Europe as an alternative to traditional fiber reinforced polymer (FRP) composites for several strengthening applications of existing masonry buildings. The terrific success of this new retrofitting system is mainly due to some advantages that it offers when compared to FRP, such as the possibility of application of the composite to wet surfaces and the vapor permeability featured by the inorganic matrix. In this work, the stress transfer between FRCM composites and a masonry substrate is investigated. FRCM strips comprised of ultra-high-strength steel fibers embedded in a cementitious grout are externally bonded to masonry blocks. Single-lap direct shear tests are performed. Parameters studied are bonded length and density of the steel fibers. Load responses are presented and failure modes are discussed. Change in the bond behavior and load carrying capacity with increasing bonded length is analyzed to determine the effective bond length.
APA, Harvard, Vancouver, ISO, and other styles
9

Santandrea, Mattia, Giovanni Quartarone, Christian Carloni, and Xiang Lin Gu. "Confinement of Masonry Columns with Steel and Basalt FRCM Composites." Key Engineering Materials 747 (July 2017): 342–49. http://dx.doi.org/10.4028/www.scientific.net/kem.747.342.

Full text
Abstract:
The rehabilitation of existing masonry elements by means of jacketing of columns using composite materials is becoming a remarkable technique in several applications that aim to increase the strength of existing masonry buildings. Fiber reinforced cementitious matrix (FRCM) composites are a newly developed strengthening system that consist of high-strength fibers embedded in a cementitious grout and externally bonded to the substrate. High resistance to fire and high temperatures, ease of handling during application, and vapor permeability with the substrate are some of the characteristics that make FRCMs a promising alternative to traditional organic composites such as fiber reinforced polymer (FRP) composites. This work presents the results of an experimental study carried out to understand the behavior of masonry columns with a square cross-section confined by steel and basalt fiber sheets embedded in a mortar matrix subjected to monotonic concentric compressive load. The effectiveness of the confinement is studied in terms of load-bearing capacity with respect to unconfined columns. The effect of corner radius for columns confined with basalt fibers is investigated.
APA, Harvard, Vancouver, ISO, and other styles
10

Carloni, Christian, Claudio Mazzotti, Marco Savoia, and Kolluru V. Subramaniam. "Confinement of Masonry Columns with PBO FRCM Composites." Key Engineering Materials 624 (September 2014): 644–51. http://dx.doi.org/10.4028/www.scientific.net/kem.624.644.

Full text
Abstract:
The overarching goal of this work is to provide a fundamental understanding of the behavior of solid brick masonry columns confined with fiber reinforced cementitious matrix (FRCM) composites. FRCM is a newly-developed type of composite material comprised of a cementitious inorganic matrix (binder) and embedded fibers that are usually bundled to improve the bond between the matrix and the fibers. Compression tests were carried out to investigate the influence of the FRCM confinement and the brick patterns on the load-carrying capacity of the confined columns. Compression tests were conducted on brick masonry columns with different brick configurations. Digital image correlation measurements on the surface of the composite and on the surface of the brick for the control specimens were attempted in order to understand the role of the mortar joints and the arch effect across the section of the columns due to the confinement. The experimental results indicate that FRCM composites can effectively increase the load-carrying capacity of brick masonry columns and the failure mode could be different from the one observed for masonry columns confined with fiber-reinforced polymer (FRP) composites.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Fiber Reinforced Cementitious Matrix (FRCM)"

1

Zucchini, Lorenzo. "Experimental analysis of fiber reinforced cementitious matrix (FRCM) confined masonry columns." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amslaurea.unibo.it/2667/.

Full text
Abstract:
The increasing use of Fiber Reinforced methods for strengthening existing brick masonry walls and columns, especially for the rehabilitation of historical buildings, has generated considerable research interest in understanding the failure mechanism in such systems. This dissertation is aimed to provide a basic understanding of the behavior of solid brick masonry walls unwrapped and wrapped with Fiber Reinforced Cementitious Matrix Composites. This is a new type of composite material, commonly known as FRCM, featuring a cementitious inorganic matrix (binder) instead of the more common epoxy one. The influence of the FRCM-reinforcement on the load-carrying capacity and strain distribution during compression test will be investigated using a full-field optical technique known as Digital Image Correlation. Compression test were carried on 6 clay bricks columns and on 7 clay brick walls in three different configuration, casted using bricks scaled respect the first one with a ratio 1:2, in order to determinate the effects of FRCM reinforcement. The goal of the experimental program is to understand how the behavior of brick masonry will be improved by the FRCM-wrapping. The results indicate that there is an arching action zone represented in the form of a parabola with a varying shape according to the used configuration. The area under the parabolas is considered as ineffectively confined. The effectively confined area is assumed to occur within the region where the arching action had been fully developed.
APA, Harvard, Vancouver, ISO, and other styles
2

Quartarone, Giovanni. "Confinement of masonry columns with Steel Fiber Reinforced Cementitious Matrix (S-FRCM) composites." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.

Find full text
Abstract:
The rehabilitation of existing masonry elements through jacketing of columns using composite materials is becoming a remarkable technique in several applications that aim to increase the strength of existing masonry building. An experimental campaign was conducted with Steel- and -Basalt Fiber Reinforced Cementitious Matrix (FRCM) systems, in order to test new products that might increase the advantages in terms of good adhesion to masonry substrate, breathability of the system, efficiency in aggressive environments, ease of installation and reversibility, which are essential for the preservation of historical buildings. The mean objective of this experimental study was to investigate the state of the improvement of square masonry columns, built in alternate stretcher and header bond configuration using as material confinement Steel- and-Basalt FRCM system, subjected to axial compression. Moreover, the effectiveness and influence of the confinement in terms of load-bearing capacity and strain distribution with respect to unconfined prisms was carried out. An optical technique, known as Digital Image Correlation (DIC), was employed to understand the interaction between the unit masonry components.
APA, Harvard, Vancouver, ISO, and other styles
3

Cozza, Alessandro. "Bond properties of SRG anchors employed to improve the effectiveness of SRG/FRCM composites." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.

Find full text
Abstract:
Fiber reinforced cementitious matrix (FRCM) composites represent a newly-developed promising alternative to traditional materials for strengthening and retrofitting reinforced concrete and masonry structures. FRCM composites present several advantages with respect to fiber reinforced polymers (FRP) composites. However, while FRP composites have been extensively studied in the last decades and several design guidelines and analytical formulations are available, FRCM composites are still in their infancy and very few data are present in the literature. Thus, another issue that should be solved regards the stated need for the anchorage systems to improve FRP and FRCM strength in situations where debonding or lack of development length is a problem. In this study, the effectiveness of the anchorage system and the interaction with an externally bonded FRCM were studied on both concrete beams and masonry columns. The columns and beams were tested until failure condition in the Laboratory of Structural and Geotechnical Engineering (DICAM – LISG) of the University of Bologna, via del Lazzaretto 15/5, Bologna. Test parameters considered for this study are: density of steel fibers, type of anchorages and bending inclination of the fiber exerted as anchorage, respectively 45° for concrete beam and 90° for masonry column. Test results demonstrate that the introduction of additional anchorages improves the effectiveness of the FRCM composites in terms of resistance and loading capacity.
APA, Harvard, Vancouver, ISO, and other styles
4

Errico, Carmine. "Determination of the influence of SRG anchors on the bond behavior of SRG/FRCM strips bonded to a quasi-brittle substrate." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.

Find full text
Abstract:
The use of FRCM composites (Fiber Reinforced Cementitious Matrix) is becoming more and more widespread. The inorganic matrix guarantees many advantages, especially when dealing with masonry substrates, including a good compatibility from both a physical and a chemical point of view and the lower sensitivity to debonding phenomena at the interface. Compared to FRP composites, which presents many data in the literature, FRCM composites must be studied in detail and research in this field has only begun in recent years. This work deals with an important problem: the realization of an anchorage system to improve the strength of composites and allow their use even in the absence of adequate development length. In this study, the effectiveness of the anchorage system and the interaction with an externally bonded FRCM were studied on masonry columns. The columns were tested until failure condition in the Laboratory of Structural and Geotechnical Engineering (DICAM – LISG) of the University of Bologna, via del Lazzaretto 15/5, Bologna. Test results demonstrate that the introduction of additional anchorages improves the effectiveness of the FRCM composites in terms of resistance and loading capacity.
APA, Harvard, Vancouver, ISO, and other styles
5

Jung, Hyunchul. "Blast Retrofit of Unreinforced Masonry Walls Using Fabric Reinforced Cementitious Matrix (FRCM) Composites." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40530.

Full text
Abstract:
Unreinforced masonry (URM) walls are commonly found in existing and heritage buildings in Canada, either as infill or load-bearing walls. Such walls are vulnerable to sudden and brittle failure under blast loads due to their insufficient out-of-plane strength. The failure of such walls under blast pressures can also result in fragmentation and wall debris which can injure building occupants. Over the years, researchers have conducted experimental tests to evaluate the structural behaviour of unreinforced masonry walls under out-of-plane loading. Various strengthening methods have been proposed, including the use of concrete overlays, polyurea coatings and advanced fiber-reinforced polymer (FRP) composites. Fabric-reinforced cementitious matrix (FRCM) is an emerging material which can also be used to strengthen and remove the deficiencies in unreinforced masonry walls. This composite material consists of a sequence of one or multiple layers of cement-based mortar reinforced with an open mesh of dry fibers (fabric). This thesis presents an experimental and analytical study which investigates the effectiveness of using FRCM composites to improve the out-of-plane resistance of URM walls when subjected to blast loading. As part of the experimental program, two large-scale URM masonry walls were constructed and strengthened with the 3-plies of unidirectional carbon FRCM retrofit. The specimens included one infill concrete masonry (CMU) wall, and one load-bearing stone wall. The University of Ottawa Shock Tube was used to test the walls under gradually increasing blast pressures until failure, and the results were compared to those of control (un-retrofitted) walls tested in previous research. Overall, the FRCM strengthening method was found to be a promising retrofit technique to increase the blast resistance of unreinforced masonry walls. In particular, the retrofit was effective in increasing the out-of-plane strength, stiffness and ultimate blast capacity of the walls, while delaying brittle failure and reducing fragmentation. As part of the analytical research, Single Degree of Freedom (SDOF) analysis was performed to predict the blast behaviour of the stone load-bearing retrofit wall. This was done by computing wall flexural strength using Plane Section Analysis, and developing an idealized resistance curve for use in the SDOF analysis. Overall, the dynamic analysis results were found to be in reasonable agreement with the experimental maximum displacements.
APA, Harvard, Vancouver, ISO, and other styles
6

Jones, Mark Stevens. "Repair of Impact-Damaged Prestressed Bridge Girders Using Strand Splices and Fabric Reinforced Cementitious Matrix." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/76648.

Full text
Abstract:
This thesis investigates the repair of impact-damaged prestressed concrete bridge girders with strand splices and fabric-reinforced cementitious matrix systems, specifically for repair of structural damage to the underside of an overpass bridge girder due to an overheight vehicle collision. Collision damage to bridges can range from minor to catastrophic, potentially requiring repair or replacement of a bridge girder. This thesis investigates the performance of two different types of repair methods for flexural applications: strand splice repair, which is a traditional repair method that is often utilized, and fabric-reinforced cementitious matrix repair, which is a relatively new repair method. The overarching goal of this project was to provide guidance for assessment and potential repair of impact-damaged girders. Prestressed concrete girders were tested to failure in flexure in this research. After a control test to establish a baseline for comparison, five tests were performed involving damaging a girder, repairing it using one of the repair methods, and testing it to failure. These tests showed that both strand splice repairs and fabric-reinforced cementitious matrix repairs can adequately restore the strength of an impact-damaged girder when up to 10% of the prestressing strands are severed. Combined repairs can also be a viable option if more than 10% of the prestressing strands are severed, though as the damage gets more severe, girder replacement becomes a more attractive option.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
7

Perez, Garcia Ramon. "Increasing the Blast Resistance of Concrete Masonry Walls Using Fabric Reinforced Cementitious Matrix (FRCM) Composites." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42095.

Full text
Abstract:
Unreinforced masonry (URM) walls are often used as load-bearing or infill walls in buildings in many countries. Such walls are also commonly found in existing and heritage buildings in Canada. URM walls are strong structural elements when subjected to axial loading, but are very vulnerable under out-of-plane loads. This type of loading may come from different sources , including seismic or blast events. When subjected to blast, wall elements experience large pressures on one of their faces due to the high pressure produced in the air when an explosion takes place. This wave of compressed air travels in a very short time and hits the wall causing immense stresses, which result in large shear and bending demands that may lead to wall failure, and the projection of debris at high velocities that can injure building occupants. This failure process is highly brittle due to the very low out-of-plane strength that characterize such walls. In the past years, many investigations have been carried out to enhance the structural behaviour of unreinforced masonry walls under out-of-plane loading. Different strengthening methods have been studied, which include the use of polyurea coatings, the application of advanced fiber-reinforced polymer (FRP) composites or the use of concrete overlays in combination with high performance reinforcement. Fabric-reinforced cementitious matrix (FRCM) is a new composite material that overcomes some of the drawbacks of FRP. This composite material consists of applying coatings which consist of one or more layers of cement-based mortar reinforced with a corresponding open mesh of dry fibers (fabric). This material has been studied as a strengthening technique to improve in-plane and out-of-plane capacity of existing URM walls as well as other structural elements, mostly under seismic actions. This thesis presents an experimental and analytical study which investigates the effectiveness of using FRCM composites to improve the out-of-plane resistance of URM walls when subjected to blast loading. As part of the experimental program, three large-scale URM masonry walls were constructed and strengthened with 1,2 and 3 layers of FRCM using unidirectional carbon fabrics. In all cases the specimens were built as load-bearing concrete masonry (CMU) walls. To increase shear resistance, two of the walls were also grouted with a flowable self-compacting concrete (SCC) mortar. Blast tests were conducted using the University of Ottawa Shock Tube and the results are compared with control walls tested in previous research at the University of Ottawa. The experimental results show that the FRCM retrofit significantly improved the blast performance of the URM load-bearing walls, allowing for increased blast capacity and improved control of displacements. The performance of the retrofit was found to be dependent on the number of retrofit layers. As part of the analytical research, Single Degree of Freedom (SDOF) analysis was carried out to predict the blast behaviour of the strengthened walls. This was done by computing wall flexural strength using plane sectional analysis and developing idealized resistance curves for use in the SDOF analysis. In general, the analysis procedure is found to produce reasonably accurate results for both the resistance functions and wall mid-height displacements under blast loading.
APA, Harvard, Vancouver, ISO, and other styles
8

Martínez, Salazar María Fernanda. "Guía para el diseño de refuerzos de elementos estructurales de hormigón armado mediante material compuesto por mallas de fibras minerales embebidas en matriz cementícea (FRCM)." Tesis, Universidad de Chile, 2016. http://repositorio.uchile.cl/handle/2250/139463.

Full text
Abstract:
Ingeniera Civil, Mención Estructuras
Las tecnologías para la rehabilitación de estructuras dañadas resultan de especial relevancia en países sísmicos. En el caso de estructuras frágiles de hormigón armado y de albañilería se han estudiado diferentes sistemas de reparación estructural, en busca de un refuerzo cuyas propiedades sean compatibles con las del sustrato y que restituyan la integridad y recuperen o aumenten de buena manera la capacidad portante de los elementos. El objetivo principal del presente trabajo de título consiste en el estudio de la metodología de diseño de uno de estos sistemas de refuerzo, sistema conocido como FRCM*. Este tipo de refuerzo es un material compuesto, constituido por aglomerante cementíceo como matriz y malla de fibras minerales como refuerzo, el cual se adhiere externamente a los elementos de hormigón armado, con mínima alteración arquitectónica. Este sistema de refuerzo es considerado como una solución prometedora para la recuperación de estructuras dañadas. En este trabajo se realiza primeramente una revisión bibliográfica de manera de contextualizar los avances y las principales características del refuerzo y comparar con el método actualmente en uso, refuerzo conocido como FRP**, variante del cual surge el desarrollo del FRCM. Uno de los objetivos de esta memoria es el estudio la precisión del método de diseño, que se realiza a partir de las disposiciones que establece el manual de diseño ACI 549, para elementos representativos de vigas y columnas a partir de resultados experimentales obtenidos de estudios de laboratorios de otros autores. De estos análisis comparativos se concluye que la norma de diseño cuantifica de manera conservadora los aumentos de capacidad de los elementos. Como aplicación de la metodología a un caso práctico, se estudia el diseño del refuerzo FRCM para una estructura real, que ha sufrido deterioro en su manto, con agrietamiento y deslaminación. Se trata de una chimenea de hormigón armado perteneciente a una termoeléctrica de carbón, ubicada en Ventanas, V región. Se propone realizar la consolidación del manto exterior, lo que permite llevar la estructura a su estado original, recuperando la capacidad estructural y prolongando su período de servicio. *FRCM: Fabric Reinforced Cementitious Matrix **FRP: Fiber Reinforced Polymer
APA, Harvard, Vancouver, ISO, and other styles
9

Campanini, Davide. "Comparison between Direct Tensile and Single Lap Shear for FRCM/SRG composites." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17203/.

Full text
Abstract:
Negli ultimi decenni sono state sviluppati nuovi materiali e tecnologie per il rinforzo e la riabilitazione delle strutture esistenti. I sistemi più recenti per il rinforzo esterno ed il recupero strutturale sono materiali compositi costituiti da fibre raggruppate in forma di tessuto ed impregnate ed immerse in una matrice inorganica. Quando il tessuto è composto da fibre di aramide, vetro, basalto, PBO o carbonio, questi compositi sono comunemente definiti Fabric Reinforced Cementitious Matrix (FRCM), mentre, quando il tessuto è fatto da micro-trefoli di acciaio, sono definiti Steel Reinforced Grout (SRG). In accordo con le rispettive normative, negli Stati Uniti le proprietà meccaniche dei compositi FRCM/SRG si misurano tramite una prova di tensione diretta su provini caricati utilizzando ancoraggi a forcella (clevis grip). In Europa, invece, si ricorre ad una prova di aderenza o single-lap shear su compositi applicati su un substrato cementizio o in muratura. L’obiettivo di questa tesi è confrontare i risultati ottenuti mediante i due metodi di caratterizzazione sviluppando una campagna sperimentale su due diversi tipi di compositi: un FRCM con fibra di carbonio (CFRCM) e un composito SRG. L’effetto di tre diverse lunghezze di ancoraggio è stato studiato per il sistema CFRCM. L’influenza del numero di strati di tessuto è stata analizzata sia per il sistema CFRCM che SRG considerando uno o due strati. I risultati mostrano che le differenti condizioni al contorno influenzano in modo significativo la caratterizzazione dei compositi. Per ottenere una misura rappresentativa delle proprietà meccaniche dei compositi FRCM/SRG, è richiesta una lunghezza di ancoraggio sufficiente. Questo studio contribuisce a sviluppare un database sperimentale che consenta la definizione di affidabili protocolli di caratterizzazione. Inoltre, fornisce informazioni rilevanti ai fini progettuali riguardo la lunghezza di ancoraggio adeguate e all’efficacia di applicazioni multistrato.
APA, Harvard, Vancouver, ISO, and other styles
10

Song, Gao. "Matrix manipulation to study ECC behaviour." Thesis, Stellenbosch : University of Stellenbosch, 2005. http://hdl.handle.net/10019.1/4647.

Full text
Abstract:
Thesis (MScEng (Civil Engineering))--University of Stellenbosch, 2005.
192 leaves on CD format, preliminary i-xii pages and numbered pages 1-135. Includes bibliography, list of figures and tables.
ENGLISH ABSTRACT: As a fibre reinforced material, engineered cementitious composite (ECC) has tough, strain-hardening behaviour in tension despite containing low volumes of fibres. This property can be brought about by developments in fibre, matrix and interfacial properties. Poly Vinyl Alcohol (PVA) fibre has been developed in recent years for ECC, due to its high tensile strength and elasticity modulus. However, the strong interfacial bond between fibre surface and matrix is a challenge for its application. This study focuses on the tailoring of matrix and fibre/matrix interfacial properties by cement replacement with fly ash (FA) and Ground Granulated Corex Slagment (GGCS). In this study the direct tensile test, three point bending test, micro-scale analysis, such as X-Ray Fluorescence Spectrometry analysis (XRF), Scanning Electron Microscope (SEM), are employed to investigate the influence of cement replacement, aging, Water/Binder (W/B) ratio, workability on ECC behaviour. This study has successfully achieved the aim that cement replacement by FA and GGCS helps to improve the fibre/matrix interfacial properties and therefore enhances the ECC tensile behaviour. Specifically, a high volume FA-ECC has stable high tensile strain capacity at the age of 21 days. This enables a constant matrix design for the investigation of other matrix influences. The Slag-ECC has a higher tensile strength but lower tensile strain capacity. The combination of FA and GGCS, moderate tensile strength and strain capacity is achieved Both tensile tests and Micro-scale analyses infer that the high volume FA-ECC has an adhesive type fibre/matrix interfacial interaction, as opposed to the cohesive type of normal PVA fibre-ECC. The different tensile behaviour trend of steel fibre-ECC and PVA fibre-ECC with the FA content is presented and discussed in this research. The investigations of aging influence indicate that the high volume FA-ECC has a beneficial effect on the properties of the composite at an early stage. However, at a high age, it has some difficulty to undergo multiple cracking and then leads to the reduction of tensile strain capacity. The modified mix design is made with the combination of FA and GGCS, which successfully increases the interfacial bond and, thereby, improves the shear transfer to reach the matrix crack strength. Therefore, an improved high age tensile behaviour is achieved. The W/B and fresh state workability influence investigations show that the W/B can hardly affect the tensile strain at early age. However, the workability influences on composite tensile strain significantly, because of the influence on fibre dispersion. Other investigations with regard to the hybrid fibre influences, the comparison of bending behaviours between extruded plate and cast plate, the relation between bending MOR and tensile stress, and the relation between compression strength and tensile strength contribute to understand ECC behaviour.
AFRIKAANSE OPSOMMING: As ‘n veselversterkte materiaal, het ontwerpte sementbasis saamgestelde materiale, taai vervormingsverhardingseienskappe in trek, ten spyte van lae veselinhoud. Hierdie eienskap word bewerkstellig, deur ontwikkelings in vesel, matriks en tussenveselbindingseienskappe. Poli-Viniel Alkohol (PVA) vesels is ontwikkel vir ECC, as gevolg van die hoë trekkrag en hoë modulus van hierdie veseltipe. Die sterk binding tussen die PVA-veseloppervlak en die matriks is egter ‘n uitdaging vir sy toepassing. Hierdie studie fokus op die skep van gunstige matriks en vesel/matriks tussenvesel-bindingseienskappe deur sement te vervang met vlieg-as (FA) en slagment (GGCS).In hierdie navorsing is direkte trek-toetse, drie-punt-buigtoetse, mikro-skaal analise (soos die X-straal ‘Fluorescence Spectrometry’ analise (XRF) en Skanderende Elektron Mikroskoop (SEM))toegepas. Hierdie metodes is gebruik om die invloed van sementvervanging,veroudering, water/binder (W/B)-verhouding en werkbaarheid op die meganiese gedrag van ECC te ondersoek.Die resultate van hierdie navorsing toon dat sementvervanging deur FA en GGCS help om die vesel/matriks tussenveselbindingseienskappe te verbeter. Dus is die ECC-trekgedrag ook verbeter. Veral ‘n hoë volume FA-ECC het stabiele hoë trekvervormingskapasiteit op ‘n ouderdom van 21 dae. Dit bewerkstellig ‘n konstante matriksontwerp vir die navorsing van ander matriks invloede. Die Slag-ECC het ‘n hoër treksterkte, maar laer trekvervormingskapasiteit. Deur die kombinasie van FA en GGCS word hoë treksterkte, sowel as gematigde vervormbaarheid in trek verkry. Beide trektoetse en mikro-skaal analise dui aan dat die hoë volume FA-ECC ‘n adhesie-tipe vesel/matriks tussenvesel-bindingsinteraksie het, teenoor die ‘kohesie-tipe van normale PVA vesel-ECC. Die verskille in trekgedrag van staalvesel-ECC en PVA vesel-ECC ten opsigte van die FA-inhoud is ondersoek en word bespreek in die navorsing. Die navorsing toon verder dat die hoë volume FA-ECC goeie meganiese eienskappe het op ‘n vroeë ouderdom. Op hoër ouderdom word minder krake gevorm, wat ‘n verlaging in die trekvervormingskapasiteit tot gevolg het. Met die kombinasie van FA en GGCS, word die vesel-matriksverband verhoog, waardeur ‘n verbetering in die skuifoordrag tussen vesel en matriks plaasvind. Verbeterde hoë omeganiese gedrag word daardeur tot stand gebring. Navorsing ten opsigte van die invoed van die W/B en werkbaarheid dui daarop dat die W/B slegs geringe invloed het op die trekvormbaarheid, terwyl die werkbaarheid ‘n dominerende rol speel in hierdie verband.Verdere studies sluit in die invloed van verskillende vesels, die vergelyking van die buigingsgedrag van geëkstueerde plate en gegote plate, die verhouding tussen buigsterkte en treksterkte, en die verhouding tussen druksterkte en treksterkte dra by tot beter begrip van die gedrag van ECC.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Fiber Reinforced Cementitious Matrix (FRCM)"

1

Carloni, Christian, Dionysios A. Bournas, Francesca G. Carozzi, Tommaso D’Antino, Giulia Fava, Francesco Focacci, Giorgio Giacomin, et al. "Fiber Reinforced Composites with Cementitious (Inorganic) Matrix." In Design Procedures for the Use of Composites in Strengthening of Reinforced Concrete Structures, 349–92. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7336-2_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Carozzi, F. G., T. D’Antino, A. Gatti, G. Mantegazza, and C. Poggi. "Characterization of Fabric Reinforced Cementitious Matrix (FRCM) Composites for Structural Retrofitting." In Lecture Notes in Civil Engineering, 235–47. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23748-6_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mihashi, Hirozo. "Tension Softening Diagram and Mechanical Behavior of Fiber Reinforced Cementitious Composite Materials." In Brittle Matrix Composites 3, 111–20. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3646-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chin, C. S., and R. Y. Xiao. "Experimental and Nonlinear Finite Element Analysis of Fiber-Cementitious Matrix Bond-Slip Mechanism." In High Performance Fiber Reinforced Cement Composites 6, 145–52. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2436-5_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

de Souza Castoldi, Raylane, Lourdes Maria Silva de Souza, and Flávio de A. Silva. "Effect of Alkali Treatment to Improve Fiber-Matrix Bonding and Mechanical Behavior of Sisal Fiber Reinforced Cementitious Composites." In RILEM Bookseries, 51–60. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83719-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Parisi, Fulvio, Costantino Menna, and Andrea Prota. "Fabric-Reinforced Cementitious Matrix (FRCM) composites." In Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, 199–227. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-08-102293-1.00010-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Fiber Reinforced Cementitious Matrix (FRCM)-advanced composite material and emerging technology for retrofitting concr." In Advances in Bridge Maintenance, Safety Management, and Life-Cycle Performance, Set of Book & CD-ROM, 1109–10. CRC Press, 2015. http://dx.doi.org/10.1201/b18175-461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ranjbarian, Majid, and Viktor Mechtcherine. "Cyclic Damage to PVA Microfibre Embedded in Cementitious Matrix in Alternating Tension-Compression Regime." In fib Bulletin 95. Fibre Reinforced Concrete: From Design to Structural Applications, 321–29. fib. The International Federation for Structural Concrete, 2020. http://dx.doi.org/10.35789/fib.bull.0095.ch33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Trimboli, A., G. Mantegazza, M. Tommasini, and E. Cerasi. "The strengthening of mansonry structures through the combined use of the joint resealing and Fabric Reinforced Cementitious Matrix (FRCM) systems: The case study of the Abbazia di San Paolo Fuori le Mura in Rome." In Brick and Block Masonry, 2167–74. CRC Press, 2016. http://dx.doi.org/10.1201/b21889-268.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Fiber Reinforced Cementitious Matrix (FRCM)"

1

Elghazy, Mohammed, Ahmed El Refai, Usama A. Ebead, and Antoni Nanni. "Performance of Corrosion-Aged Reinforced Concrete (RC) Beams Rehabilitated with Fabric-Reinforced Cementitious Matrix (FRCM)." In Fourth International Conference on Sustainable Construction Materials and Technologies. Coventry University, 2016. http://dx.doi.org/10.18552/2016/scmt4s270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Moceiki, Rimvydas, Asta Kičaitė, and Gintautas Skripkiūnas. "Effect of aggregate particle shape and granulometry on the workability and mechanical properties of glass reinforced concrete." In The 13th international scientific conference “Modern Building Materials, Structures and Techniques”. Vilnius Gediminas Technical University, 2019. http://dx.doi.org/10.3846/mbmst.2019.002.

Full text
Abstract:
Modern alkali resistant glass fibers (ARG) modified with 17% ZrO2 are getting more popular as reinforcement of cementitious matrixes. Typical matrix compositions with quartz, Portland cement, 13 mm length ARG glass fibres and PCE superplasticizer can offer good workability, product quality and highly increased mechanical characteristics. In production of self compacting fibre reinforced premix highly siliceous fine sands with nearly round shape particles are usually preferred. This article investigates influence of particle shape for workability of glass fibre reinforced concrete when alternative fillers- crushed granite and regular sand are used. 12 compositions were made whith different quantities of fillers, changing quartz from 0% to 50% with alternative aggregates. Slump tests according to EN 1170-1 were made and showed major impact of particle shape characteristics on mix workability. When quantity of altrernative aggrates was increased, slump of fresh mix decreased and fibre- matrix segregation occurred. New workability factor W is offered and values calculated, to have numeric representation of workability. Alternative aggregates had no clear influence for flexural strenght, when beams 40×40×160 were tested. Compressive strength dropped by 25% when regular sand was used. Typical quartz matrix resulted in lower water absorbtion.
APA, Harvard, Vancouver, ISO, and other styles
3

Aljazaeri, Zena R., and John J. Myers. "Strengthening of reinforced concrete beams in shear with fiber reinforced cementitious matrix." In International Conference on Performance-based and Life-cycle Structural Engineering. School of Civil Engineering, The University of Queensland, 2015. http://dx.doi.org/10.14264/uql.2016.762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yu, Jing, Lingshi Meng, and Christopher Leung. "Pull-out Response of Single Steel Fiber Embedded in PVA Fiber Reinforced Cementitious Matrix." In 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures. IA-FraMCoS, 2016. http://dx.doi.org/10.21012/fc9.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mohammad, Rebin, and Ashraf Ayoub. "Behavior of Fiber Reinforced Cementitious Matrix Elements under Combined Thermo-Mechanical Loads." In Structures Congress 2019. Reston, VA: American Society of Civil Engineers, 2019. http://dx.doi.org/10.1061/9780784482247.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kabele, P. "Effects of chemical exposure on bond between synthetic fiber and cementitious matrix." In ICTRC'2006 - 1st International RILEM Conference on Textile Reinforced Concrete. RILEM Publications SARL, 2006. http://dx.doi.org/10.1617/2351580087.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Okten, Mehmet Selim, Cemil Ozkan, Mustafa Gencoglu, and Kadir Guler. "Shear Strength Behavior Of Infill Walls Strengthened By Carbon Fiber Reinforced Cementitious Matrix." In The Seventh International Structural Engineering and Construction Conference. Singapore: Research Publishing Services, 2013. http://dx.doi.org/10.3850/978-981-07-5354-2_st-151-467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mercedes, Luis, Lluis Gil, and Ernest Bernat. "Comportamiento mecánico de compuestos de matriz cementicia y tejidos de fibras vegetales." In HAC2018 - V Congreso Iberoamericano de Hormigón Autocompactable y Hormigones Especiales. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/hac2018.2018.5501.

Full text
Abstract:
Los compuestos cementicios reforzados con fibras en forma de tejidos (fibre reinforced cementitious composite: FRCC) han demostrado ser un material de refuerzo con un prometedor futuro, debido a su facilidad de aplicación, resistencia al fuego y su capacidad de disipar energía a través de un patrón de multifisuras. El auge que viene desarrollando el uso de fibras vegetales como refuerzo dentro de los materiales compuestos debido a su bajo costo, baja densidad, reciclabilidad y biodegradabilidad, hace que estas fibras se presenten como una opción de refuerzo a considerar dentro los compuestos cementicios. En este estudio se han elaborado especímenes FRCC de diferentes fibras vegetales (lino, cáñamo, sisal y algodón), utilizando un tratamiento a base de poliéster para evitar la degradación de las fibras y mejorar su eficacia dentro de la matriz alcalina de los compuestos cementicios. Los resultados han mostrado una excelente interacción entre los tejidos y la matriz utilizada, pues el poliéster además mejorar las propiedades mecánicas de los hilos y proteger las fibras frente a la alcalinidad de la matriz, aumenta la adherencia con esta, y con ello mejora las prestaciones mecánicas del FRCC. Donde los resultados presentan las fibras de lino y cáñamo (por sus mejores propiedades mecánicas frente a otras fibras vegetales) como las fibras vegetales con mayor futuro dentro de los materiales compuestos.DOI: http://dx.doi.org/10.4995/HAC2018.2018.5501
APA, Harvard, Vancouver, ISO, and other styles
9

Nault, Gregory, and Eric Samson. "UHPC: a Durable Concrete Overlay Solution for Bridge Decks." In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.1613.

Full text
Abstract:
<p>The key to designing and constructing longer-lasting bridges is through the use of more durable materials. Ultra-high performance concrete (UHPC) is an emerging technology used in bridge infrastructure projects across North America, Europe, and Asia. UHPC is an engineered cementitious fiber-reinforced composite with exceptional strength and durability due to its densely packed matrix, discontinuous pore structure, and micro- crack control. These characteristics significantly delay typical concrete deterioration mechanisms in UHPC. For this reason, bridge specifiers are more frequently including UHPC into their designs. One application of particular interest is the use of UHPC as a thin-bonded, structurally-composite overlay at the surface of the bridge deck. This topping layer provides a riding surface that is both abrasion resistant and virtually impermeable and will protect the conventional materials and elements underneath. Additionally, this layer can be used as a strengthening technique to increase the live load carrying capacity of the existing structure. This solution is being deployed on both new and existing bridges as a rehabilitation strategy and to provide long-term protection to the deck.</p>
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography