Academic literature on the topic 'Fiber-reinforced plastics – Mechanical properties – Testing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fiber-reinforced plastics – Mechanical properties – Testing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fiber-reinforced plastics – Mechanical properties – Testing"

1

Fan, Wei, Jia-lu Li, Shun-hou Fan, et al. "Random process model of mechanical property degradation in carbon fiber-reinforced plastics under thermo-oxidative aging." Journal of Composite Materials 51, no. 9 (2016): 1253–64. http://dx.doi.org/10.1177/0021998316672089.

Full text
Abstract:
The mechanical properties of carbon fiber-reinforced plastics used in aerospace are vulnerable to degradation under thermo-oxidative aging conditions. However, it is hard to establish a mechanical property prediction model for carbon fiber-reinforced plastics from thermo-oxidative aging mechanism point of view since the thermo-oxidative aging degradation processes are very complex. A mathematical model was proposed based on the theory of stochastic processes for predicting mechanical property degradation of carbon fiber-reinforced plastics under thermo-oxidative aging conditions in the present work. However, the predicted values calculated by the “random process model” were not in good agreement with experimental data. And then a “modified random process model” (namely a wider random process model) was established through Box–Cox transformation for random process model. The verification of the evaluation model showed that the modified random process model can nicely describe the mechanical performance degradation of carbon fiber-reinforced plastics with the increasing of aging time under certain aging temperatures. As the modified random process model was established without limiting the reinforced structure of carbon fiber-reinforced plastics, the described method provides an opportunity to rapidly predict the mechanical properties and the lifetime of any carbon fiber-reinforced plastics by testing the mechanical properties of carbon fiber-reinforced plastics before and after aging for a short period of time.
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Zhaoqian, Xiaodong Zhou, and Chonghua Pei. "Effect of Sisal Fiber Surface Treatment on Properties of Sisal Fiber Reinforced Polylactide Composites." International Journal of Polymer Science 2011 (2011): 1–7. http://dx.doi.org/10.1155/2011/803428.

Full text
Abstract:
Mechanical properties of composites are strongly influenced by the quality of the fiber/matrix interface. The objective of this study was to evaluate the mechanical properties of polylactide (PLA) composites as a function of modification of sisal fiber with two different macromolecular coupling agents. Sisal fiber reinforced polylactide composites were prepared by injection molding, and the properties of composites were studied by static/dynamic mechanical analysis (DMA). The results from mechanical testing revealed that surface-treated sisal fiber reinforced composite offered superior mechanical properties compared to untreated fiber reinforced polylactide composite, which indicated that better adhesion between sisal fiber and PLA matrix was achieved. Scanning electron microscopy (SEM) investigations also showed that surface modifications improved the adhesion of the sisal fiber/polylactide matrix.
APA, Harvard, Vancouver, ISO, and other styles
3

Kwon, Junbeom, Jaeyoung Choi, Hoon Huh, and Jungju Lee. "Evaluation of the effect of the strain rate on the tensile properties of carbon–epoxy composite laminates." Journal of Composite Materials 51, no. 22 (2016): 3197–210. http://dx.doi.org/10.1177/0021998316683439.

Full text
Abstract:
This paper is concerned with evaluation and prediction of the tensile properties of carbon fiber-reinforced plastics laminates considering the strain rate effect at intermediate strain rates. Uniaxial tensile tests of carbon fiber-reinforced plastics laminates were conducted at various strain rates ranging from 0.001 s–1 to 100 s–1 using Instron 8801 and a high speed material testing machine to measure the variation of the elastic modulus and the ultimate tensile strength. Tensile test specimens were designed based on the ASTM standards and stacked unidirectionally such as [0°], [90°] and [45°] to predict the elastic modulus of carbon fiber-reinforced plastics laminates with various stacking sequences. The axial strain was measured by the digital image correlation method using a high speed camera and ARAMIS software to enhance the accuracy of the strain measurement. A prediction model of the elastic modulus of carbon fiber-reinforced plastics laminates is newly proposed in consideration of the laminate theory and the tensile properties of unidirectional carbon fiber-reinforced plastics laminates. The prediction model was utilized to predict the tensile properties of [0°/90°]s laminates, [±45°]s laminates, and [0°/±45/90°]T laminates for validation of the model. The elastic moduli predicted were compared with the static and dynamic tensile test results to confirm the accuracy of the prediction model.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Wenfu, Cuicui Wang, Shaohua Gu, Haixia Yu, Haitao Cheng, and Ge Wang. "Physical-Mechanical Properties of Bamboo Fiber Composites Using Filament Winding." Polymers 13, no. 17 (2021): 2913. http://dx.doi.org/10.3390/polym13172913.

Full text
Abstract:
In order to study the performance of the bamboo fiber composites prepared by filament winding, composites reinforced with jute fiber and glass fiber were used as control samples. The structure and mechanical properties of the composites were investigated by scanning electric microscope (SEM), tensile testing, bending testing, and dynamic mechanical analysis. The results demonstrated that the bamboo fiber composites exhibited lower density (0.974 g/cm3) and mechanical properties in comparison of to fiber composite and glass fiber composite, because the inner tissue structure of bamboo fiber was preserved without resin adsorbed into the cell cavity of fibrous parenchyma. The bamboo fibers in composites were pulled out, while the fibers in the surface of composites were torn, resulting in the lowest mechanical performance of bamboo fiber composites. The glass transition temperature of twisting bamboo fiber Naval Ordnance Laboratory (TBF-NOL) composite (165.89 °C) was the highest in general, which indicated that the TBF circumferential composite had the best plasticizing properties and better elasticity, the reason being that the fiber-reinforced epoxy circumferential composite interface joint is a physical connection, which restricts the movement of the molecular chain of the epoxy matrix, making the composite have a higher storage modulus (6000 MPa). In addition, The TBF-NOL had the least frequency dependence, and the circumferential composite prepared by TBF had the least performance variability. Therefore, the surface and internal structures of the bamboo fiber should be further processed and improved by decreasing the twisting bamboo fiber (TBF) diameter and increasing the specific surface area of the TBF and joint surface between fibers and resin, to improve the comprehensive properties of bamboo fiber composites.
APA, Harvard, Vancouver, ISO, and other styles
5

Atmakuri, Ayyappa, Arvydas Palevicius, Lalitnarayan Kolli, Andrius Vilkauskas, and Giedrius Janusas. "Development and Analysis of Mechanical Properties of Caryota and Sisal Natural Fibers Reinforced Epoxy Hybrid Composites." Polymers 13, no. 6 (2021): 864. http://dx.doi.org/10.3390/polym13060864.

Full text
Abstract:
In recent years, natural fiber reinforced polymer composites have gained much attention over synthetic fiber composites because of their many advantages such as low-cost, light in weight, non-toxic, non-abrasive, and bio-degradable properties. Many researchers have found interest in using epoxy resin for composite fabrication over other thermosetting and thermoplastic polymers due to its dimensional stability and mechanical properties. In this research work, the mechanical and moisture properties of Caryota and sisal fiber-reinforced epoxy resin hybrid composites were investigated. The main objective of these studies is to develop hybrid composites and exploit their importance over single fiber composites. The Caryota and sisal fiber reinforced epoxy resin composites were fabricated by using the hand lay-up technique. A total of five different samples (40C/0S, 25C/15S, 20C/20S, 15C/25S, 0C/40S) were developed based on the rule of hybridization. The samples were allowed for testing to evaluate their mechanical, moisture properties and the morphology was studied by using the scanning electron microscope analysis. It was observed that hybrid composites have shown improved mechanical properties over the single fiber (Individual fiber) composites. The moisture studies stated that all the composites were responded to the water absorption but single fiber composites absorbed more moisture than hybrid composites.
APA, Harvard, Vancouver, ISO, and other styles
6

Rajmohan, T., K. Mohan, and K. Palanikumar. "Synthesis and Characterization of Multi Wall Carbon Nanotube (MWCNT) Filled Hybrid Banana-Glass Fiber Reinforced Composites." Applied Mechanics and Materials 766-767 (June 2015): 193–98. http://dx.doi.org/10.4028/www.scientific.net/amm.766-767.193.

Full text
Abstract:
Natural Fiber Reinforced Composite (NFRC) are used by replacing Synthetic Fiber Reinforced Composites (SFRC) because of its poor reusability, recycling, bio degradability. Even though NFRC are lack in thermal stability, strength degradation, water absorption and poor impact properties. The hybridization and nanoparticles mixed in different polymers are used to improve mechanical and wear properties of the polymer composites. In the present investigation Multi wall carbon nanotubes (MWCNT) dispersed in Epoxy resin using ultrasonic bath sonicator are used as matrix face for hybrid banana-Glass Fiber Reinforced Plastics composite materials which is manufactured by compression molding processes. As per ASTM standards tensile, compression tests are carried out by using Universal Testing Machine. Microstructure of samples are investigated by scanning electron microscope (SEM) with Energy dispersive X-ray (EDS). SEM shows the homogeneous distribution of the fiber in the modified polymer matrix. The results indicated that the increase in weight % of MWCNT improves the mechanical properties of MWCNT filled hybrid natural fiber composites.
APA, Harvard, Vancouver, ISO, and other styles
7

Cavalcanti, Daniel K. K., Jorge S. S. Neto, Henrique F. M. de Queiroz, Yiyun Wu, Victor F. S. Neto, and Mariana D. Banea. "Development and Mechanical Characterization of Short Curauá Fiber-Reinforced PLA Composites Made via Fused Deposition Modeling." Polymers 14, no. 22 (2022): 5047. http://dx.doi.org/10.3390/polym14225047.

Full text
Abstract:
The increase in the use of additive manufacturing (AM) has led to the need for filaments with specific and functional properties in face of requirements of structural parts production. The use of eco-friendly reinforcements (i.e., natural fibers) as an alternative to those more traditional synthetic counterparts is still scarce and requires further investigation. The main objective of this work was to develop short curauá fiber-reinforced polylactic acid (PLA) composites made via fused deposition modeling. Three different fiber lengths (3, 6, and 8 mm), and three concentrations in terms of weight percentage (2, 3.5, and 5 wt.%) were used to fabricate reinforced PLA filaments. Tensile and flexural tests in accordance with their respective American Society for Testing and Materials (ASTM) standards were performed. A thermal analysis was also carried out in order to investigate the thermal stability of the new materials. It was found that the main driving factor for the variation in mechanical properties was the fiber weight fraction. The increase in fiber length did not provide any significant benefit on the mechanical properties of the curauá fiber-reinforced PLA composite printed parts. The composites produced with PLA filaments reinforced by 3 mm 2% curauá fiber presented the overall best mechanical and thermal properties of all studied groups. The curauá fiber-reinforced PLA composites made via fused deposition modeling may be a promising innovation to improve the performance of these materials, which might enable them to serve for new applications.
APA, Harvard, Vancouver, ISO, and other styles
8

Ning, Fuda, Weilong Cong, Yingbin Hu, and Hui Wang. "Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties." Journal of Composite Materials 51, no. 4 (2016): 451–62. http://dx.doi.org/10.1177/0021998316646169.

Full text
Abstract:
Carbon fiber-reinforced plastic composites have been intensively used for many applications due to their attractive properties. The increasing demand of carbon fiber-reinforced plastic composites is driving novel manufacturing processes to be in short manufacturing cycle time and low production cost, which is difficult to realize during carbon fiber-reinforced plastic composites fabrication in common molding processes. Fused deposition modeling, as one of the additive manufacturing techniques, has been reported for fabricating carbon fiber-reinforced plastic composites. The process parameters used in fused deposition modeling of carbon fiber-reinforced plastic composites follow those in fused deposition modeling of pure plastic materials. After adding fiber reinforcements, it is crucial to investigate proper fused deposition modeling process parameters to ensure the quality of the carbon fiber-reinforced plastic parts fabricated by fused deposition modeling. However, there are no reported investigations on the effects of fused deposition modeling process parameters on the mechanical properties of carbon fiber-reinforced plastic composites. In the experimental investigations of this paper, carbon fiber-reinforced plastic composite parts are fabricated using a fused deposition modeling machine. Tensile tests are conducted to obtain the tensile properties. The effects of fused deposition modeling process parameters on the tensile properties of fused deposition modeling-fabricated carbon fiber-reinforced plastic composite parts are investigated. The fracture interfaces of the parts after tensile testing are observed by a scanning electron microscope to explain material failure modes and reasons.
APA, Harvard, Vancouver, ISO, and other styles
9

Austermann, Johannes, Alec J. Redmann, Vera Dahmen, Adam L. Quintanilla, Sue J. Mecham, and Tim A. Osswald. "Fiber-Reinforced Composite Sandwich Structures by Co-Curing with Additive Manufactured Epoxy Lattices." Journal of Composites Science 3, no. 2 (2019): 53. http://dx.doi.org/10.3390/jcs3020053.

Full text
Abstract:
In this paper, a new process of joining additive manufactured (AM) lattice structures and carbon fiber-reinforced plastics (CFRPs) to manufacture hybrid lattice sandwich structures without secondary bonding is investigated. Multiple variations of lattice structures are designed and 3D printed using Digital Light Synthesis (DLS) and a two-stage (B-stage) epoxy resin system. The resulting lattice structures are only partially cured and subsequently thermally co-cured with pre-impregnated carbon fiber reinforcement. The mechanical properties of the additive manufactured lattice structures are characterized by compressive tests. Furthermore, the mechanical properties of hybrid lattice sandwich structures are assessed by flexural beam testing. From compressive testing of the additive manufactured lattice structures, high specific strength can be ascertained. The mechanical behavior shows these lattice structures to be suitable for use as sandwich core materials. Flexural beam testing of hybrid lattice sandwich structures shows high strength and stiffness. Furthermore, the strength of the co-cured bond interface is high enough to surpass the strength of the lattice core.
APA, Harvard, Vancouver, ISO, and other styles
10

Anwar, Miftahul, Indro Cahyono Sukmaji, Wisnu R. Wijang, and Kuncoro Diharjo. "Application of Carbon Fiber-Based Composite for Electric Vehicle." Advanced Materials Research 896 (February 2014): 574–77. http://dx.doi.org/10.4028/www.scientific.net/amr.896.574.

Full text
Abstract:
In the present work, we study how to improve mechanical properties of carbon fiber reinforced plastics (CFRP) in order to increase crashworthiness probability. Experimentally, hybrid carbon /glass fiber composite was made in order to get higher mechanical properties. As a results, with increasing carbon fiber volume fraction (% vol.), tensile strength and flexural strength of the composite are increased. Simulation of impact testing is also performed using data properties taken from the experiment with variation of impact forces on front bumper structure. By varying external load to the bumper, the result shows that higher thickness of hybrid carbon/glass fiber composite has always smaller stress values than thinner one. On the other hand, the displacement of hybrid carbon/glass car bumper increases linearly with increasing external load.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Fiber-reinforced plastics – Mechanical properties – Testing"

1

Saka, Kolawole. "Dynamic mechanical properties of fibre reinforced plastics." Thesis, University of Oxford, 1987. http://ora.ox.ac.uk/objects/uuid:0514854d-36db-4cc1-b377-03a75550ab76.

Full text
Abstract:
A small gas gun, capable of accelerating a projectile 1m long by 25.4mm diameter to about 50 m/s, and an extended split Hopklnson bar apparatus have been designed and constructed for the tensile impact testing of fibre reinforced composite specimens at strain rates of the order of 1000/s. Elastic strain measurements derived from the Hopkinson bar analysis are checked, using strain gauges attached directly to the specimen and the validity of the elastic moduli determined under tensile impact is confirmed. Epoxy specimens reinforced with plain-weave fabrics of either carbon or glass or with several hybrid combinations of the two in various lay-ups, giving five different weight fractions of reinforcement from all-carbon to all-glass, have been tested in tension at three strain rates, nominally, ~10<sup>-3</sup>/s, ~10/s and ~10<sup>3</sup>/s. The effect of both hybrid composition (volume fraction of carbon reinforced plies) and applied strain rate on the tensile modulus, the tensile strength and the strain to fracture is determined and a limited hybrid effect is observed in specimens with a carbon volume fraction in the approximate range 0.6 to 0.7 where, at all three strain rates there is an enhancement of the failure strain over that for the all-carbon plies and an increased failure strength, most marked in the impact tests, over that predicted by the rule of mixtures. The fracture surfaces of specimens are examined by optical and scanning electron microscopy and the failure process in the hybrid composites is related to that found in the all-carbon and the all-glass specimens. The classical laminated plate theory and the Tsai-Wu strength criterion are used to predict the stiffness and strength of the hybrid composites from the elastic and strength properties of the constituent plies. Analytical predictions are in good agreement with experimental measurements.
APA, Harvard, Vancouver, ISO, and other styles
2

Dike, Nnadozie N. F. "Performance of Mechanical and Non-mechanical Connections to GFRP Components." Master's thesis, University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5187.

Full text
Abstract:
There are presently many solutions to dealing with aging or deteriorated structures. Depending on the state of the structure, it may need to be completely over-hauled, demolished and replaced, or only specific components may need rehabilitation. In the case of bridges, rehabilitation and maintenance of the decks are critical needs for infrastructure management. Viable rehabilitation options include replacement of decks with aluminum extrusions, hybrid composite and sandwich systems, precast reinforced concrete systems, or the use of pultruded fiber-reinforced polymer (FRP) shapes. Previous research using pultruded glass fiber-reinforced polymer (GFRP) decks, focused on behaviour under various strength and serviceability loading conditions. Failure modes observed were specific to delamination of the flexural cross sections, local crushing under loading pads, web buckling and lip separation. However certain failure mechanisms observed from in-situ installations differ from these laboratory results, including behaviour of the connectors or system of connection, as well as the effect of cyclic and torsional loads on the connection. This thesis investigates the role of mechanical and non-mechanical connectors in the composite action and failure mechanisms in a pultruded GFRP deck system. There are many interfaces including top panel to I-beam, deck panel to girder, and panel to panel, but this work focuses on investigating the top panel connection. This is achieved through comparative component level shear, uplift, and flexure testing to characterize failure and determine connector capacity. Additionally, a connection of this GFRP deck system to a concrete girder is investigated during the system-level test. Results show that an epoxy non-mechanical connection may be better than mechanical options in ensuring composite behaviour of the system.<br>ID: 031001297; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Title from PDF title page (viewed March 7, 2013).; Thesis (M.S.)--University of Central Florida, 2012.; Includes bibliographical references (p. 80-82).<br>M.S.<br>Masters<br>Civil, Environmental, and Construction Engineering<br>Engineering and Computer Science<br>Civil Engineering; Structural and Geotechnical Engineering
APA, Harvard, Vancouver, ISO, and other styles
3

Kang, Jin Ook. "Fiber reinforced polymeric pultruded members subjected to sustained loads." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/20191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cho, Baik-Soon. "The in-plane shear properties of pultruded materials." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/21291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Acosta, Costa Felipe Jesús. "Experimental characterization of the mechanical and structural properties of fiber reinforced polymeric bridge deck components." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/21523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jayaraman, Krishnan. "Effect of the interphase on the thermo-mechanical response of unidirectional fiber-reinforced epoxies : modeling, analyses and experiments /." Diss., This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-02262007-095957/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Guerra, Dante Rene. "INFLUENCE OF NANOPARTICLES ON THE PHISICAL PROPERTIES OF FIBER REINFORCED POLYMER COMPOSITES." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1259091518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Park, Jin Young. "Pultruded composite materials under shear loading." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/32865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zulu, Andrew Wisdom. "Thick Composite Properties and Testing Methods." Thesis, KTH, Lättkonstruktioner, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-243885.

Full text
Abstract:
In most application to date reinforced carbon fiber composites have been used in relatively smaller thickness, less than 10mm thick and essentially for carrying in-plane loads. As a result, design and testing procedures were developed which reflected the need to understand the in-plane response of the material. recently, engineers and designers have begun to use reinforced carbon fiber composites in thicker sections, where an understanding of the through-thickness response is of para-mount importance in designing reliable structures, particularly where the through-thickness strength has a controlling influence on the overall structural strength of the component. In this thesis tests will be done on carbon fiber non-crimp fabric (NCF) which will be loaded in compression and shear and elastic moduli and strength will be evaluated. In characterizing the through-thickness mechanical properties of a composite, the objective is to produce a state of stress in the test specimen which is uniform and will repeatedly measure the true properties with accuracy. In this study, specimens were machined from two blocks of thick (~20 mm) laminates of glass/epoxy and NCF carbon fiber infused with vinylester and tested in compression, and shear.
APA, Harvard, Vancouver, ISO, and other styles
10

Smith, Kevin Jackson. "Compression creep of a pultruded E-glass/polyester composite at elevated service temperatures." Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7195.

Full text
Abstract:
This thesis presents the results of an experimental investigation into the behavior of a pultruded E-glass/polyester fiber reinforced polymer (FRP) composite under sustained loads at elevated temperatures in the range of those that might be seen in service. This investigation involved compression creep tests of material coupons performed at a constant stress level of 33% of ultimate strength and three temperatures levels; 23.3°C (74°F), 37.7°F (100°F), and 54.4°C (130°F). The results of these experiments were used in conjunction with the Findley power law and the Time- Temperature Superposition Principle (TTSP) to formulate a predictive curve for the longterm creep behavior of these pultruded sections. Further experiments were performed to investigate the effects of thermal cycles in order to better simulate service conditions.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Fiber-reinforced plastics – Mechanical properties – Testing"

1

German, Janusz. Intralaminar damage in fiber-reinforced polymeric matrix laminates. Cracow University of Technology, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jenkins, Michael G., Edgar Lara-Curzio, and Stephen T. Gonczy. Mechanical, thermal, and environmental testing and performance of ceramic composites and components. ASTM, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hodgkinson, John M. Mechanical Testing of Advanced Fibre Composites. CRC, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Menna, Todd J., ed. Characterization and Failure Analysis of Plastics. ASM International, 2022. http://dx.doi.org/10.31399/asm.hb.v11b.9781627083959.

Full text
Abstract:
Volume 11B serves as a reference and guide to help engineers determine the causes of failure in plastic components and make corrective adjustments through design and manufacturing modifications. It contains seven major divisions, covering polymer science and processing, material selection and design, chemical, thermal, and physical analysis, mechanical behavior and testing, degradation mechanisms, systematic failure analysis, and life assessment and optimization. It examines a wide range of factors that contribute to the properties and behaviors of engineering plastics and the effect of thermal and mechanical stresses, impact loading, fatigue, wear, weathering, moisture and chemical exposure, photochemical aging, microbial degradation, and elevated temperatures. It addresses issues such as flammability, environmental stress cracking, crazing, and stress whitening and describes the unique characteristics of polymer fracture and how to assess and predict service life using fracture mechanics. It also presents and analyzes numerous examples of failure, including design and manufacturing related failures, wear failures of reinforced plastics, and failures due to creep and yielding.
APA, Harvard, Vancouver, ISO, and other styles
5

Hong, Zhenqiu. The measurement of interphase properties in wood-polystyrene composites utilizing inverse gas chromatography. 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1958-, Jenkins Michael G., Lara-Curzio Edgar 1963-, Gonczy Stephen T. 1947-, and Symposium on Environmental, Mechanical, and Thermal Properties and Performance of Continuous Fiber Ceramic Composite (CFCC) Materials and Components (1999 : Seattle, Wash.), eds. Mechanical, thermal, and environmental testing and performance of ceramic composites and components. ASTM, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1935-, Adams Donald Frederick, and Langley Research Center, eds. Mechanical properties of several neat polymer matrix materials and unidirectional carbon-fiber reinforced composites. National Aeronautics and Space Administration, Langley Research Center, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

(Editor), Michael G. Jenkins, Edgar Lara-Curzio (Editor), and Stephen T. Gonczy (Editor), eds. Mechanical, Thermal, and Environmental Testing and Performance of Ceramic Composites and Components (A S T M Special Technical Publication.// Stp, 1392) (Astm Special Technical Publication// Stp). ASTM International, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Min. Three-dimensional, nonlinear viscoelastic analysis of laminated composites: A finite element approach. 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Min. Three-dimensional, nonlinear viscoelastic analysis of laminated composites: A finite element approach. 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Fiber-reinforced plastics – Mechanical properties – Testing"

1

Diani, Marco, Nicoletta Picone, and Marcello Colledani. "Smart Composite Mechanical Demanufacturing Processes." In Systemic Circular Economy Solutions for Fiber Reinforced Composites. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22352-5_4.

Full text
Abstract:
AbstractRecycling of Glass Fibers Reinforced Plastics (GFRP) can be preferentially performed through mechanical processes due to the low cost of virgin fibers. Because of the poorer mechanical properties after comminution, the most interesting solution to reuse this material is a cross-sectorial approach, in which particles obtained through shredding of products from one sector are used in another sector. To allow this, a fine control on the particles dimension is fundamental, together with the minimization of operational costs. In this chapter, after a deep analysis on the available size reduction technologies and a preliminary feasibility analysis on the products involved in Use-Case 1 of the FiberEUse project, a 2-step architecture to optimize these two characteristics is presented. The models for both steps are shown and the developed solutions is applied to the End-of-Life products, demonstrating the potential of this approach, leading to optimal dimension of the particle with operational costs lower than both virgin fibers and disposal costs.
APA, Harvard, Vancouver, ISO, and other styles
2

Broughton, William R., and Antony S. Maxwell. "Accelerated Life Testing and Aging." In Characterization and Failure Analysis of Plastics. ASM International, 2022. http://dx.doi.org/10.31399/asm.hb.v11a.a0006909.

Full text
Abstract:
Abstract Accelerated life testing and aging methodologies are increasingly being used to generate engineering data for determining material property degradation and service life (or fitness for purpose) of plastic materials for hostile service conditions. This article presents an overview of accelerated life testing and aging of unreinforced and fiber-reinforced plastic materials for assessing long-term material properties and life expectancy in hostile service environments. It considers various environmental factors, such as temperature, humidity, pressure, weathering, liquid chemicals (i.e., alkalis and acids), ionizing radiation, and biological degradation, along with the combined effects of mechanical stress, temperature, and moisture (including environmental stress corrosion). The article also includes information on the use of accelerated testing for predicting material property degradation and long-term performance.
APA, Harvard, Vancouver, ISO, and other styles
3

Nestor Djomou Djonga, Paul, Ahmat Tom, Hambate Gomdje Valery, and Georges Elambo Nkeng. "Mechanical Properties and Chemical Stability of Bathroom Wall Composites Manufactured from Recycle Polyethylene Terephthalate (PET) Mixed with Cocoa Hull Powder." In Fiber-Reinforced Plastics. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102457.

Full text
Abstract:
The recovery of plastic waste and agricultural residues has led us to develop composites based on polyethylene terephthalate (PET) filled with cocoa shell powder. These shells have been previously treated with the organosolv process to improve the fiber-matrix interaction. The objective of this work is to develop wall covering materials to replace tiles which require a lot of energy and from PET. The composites were made by the method of melt mixing followed by compression molding. The mechanical, physico-chemical properties and stability to environmental conditions were evaluated. The results showed that the incorporation of 20–30% of powder in the matrix made of PET gave rise to a composite material with good properties for application in construction, as a wall covering replacing the tile. The study showed that the optimum powder weight ratio for optimum composite properties was achieved at a powder weight ratio of 30%. The maximum tensile strength of 60.3 MPa, bending strength of 19.5 MPa, impact strength of 10.3 MPa and water absorption of 1.34% were obtained. Compared with ceramic tile, this water absorption test value is within the range and shows that this composite tile is suitable for use as a bathroom tile.
APA, Harvard, Vancouver, ISO, and other styles
4

Koruk, Hasan, and Garip Genc. "Acoustic and mechanical properties of luffa fiber-reinforced biocomposites." In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-08-102292-4.00017-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rahman, Rozyanty, and Syed Zhafer Firdaus Syed Putra. "Tensile properties of natural and synthetic fiber-reinforced polymer composites." In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-08-102292-4.00005-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Krishnan, Padmanabhan. "Evaluation and methods of interfacial properties in fiber-reinforced composites." In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-08-102292-4.00018-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ilyas, R. A., S. M. Sapuan, Abudukeremu Kadier, et al. "Mechanical Testing of Sugar Palm Fiber Reinforced Sugar Palm Biopolymer Composites." In Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-819661-8.00007-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wei, Junhua. "Mechanically Improved and Multifunctional CFRP Enabled by Resins with High Concentrations Epoxy-Functionalized Fluorographene Fillers." In Fiber-Reinforced Plastic [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.100141.

Full text
Abstract:
To meet the maximum potential of the mechanical properties of carbon fiber reinforced plastics (CFRP), stress transfer between the carbon fibers through the polymer matrix must be improved. A recent promising approach reportedly used reinforcing particles as fillers dispersed in the resin. Carbon based fillers are an excellent candidate for such reinforcing particles due to their intrinsically high mechanical properties, structure and chemical nature similar to carbon fiber and high aspect ratio. They have shown great potential in increasing the strength, elastic modulus and other mechanical properties of interest of CFRPs. However, a percolation threshold of ~1% of the carbon-based particle concentration in the base resin has generally been reported, beyond which the mechanical properties deteriorate due to particle agglomeration. As a result, the potential for further increase of the mechanical properties of CFRPs with carbon-based fillers is limited. We report a significant increase in the strength and elastic modulus of CFRPs, achieved with a novel reinforced thermoset resin that contains high loadings of epoxy-reacted fluorographene (ERFG) fillers. We found that the improvement in mechanical performance of CFRPs was correlated with increase in ERFG loading in the resin. Using a novel thermoset resin containing 10 wt% ERFG filler, CFRPs fabricated by wet layup technique with twill weaves showed a 19.6% and 17.7% increase in the elastic modulus and tensile strength respectively. In addition, because of graphene’s high thermal conductivity and high aspect ratio, the novel resin enhanced CFRPs possessed 59.3% higher through-plane thermal conductivity and an 81-fold reduction in the hydrogen permeability. The results of this study demonstrate that high loadings of functionalized particles dispersed in the resin is a viable path towards fabrication of improved, high-performance CFRP parts and systems.
APA, Harvard, Vancouver, ISO, and other styles
9

Naveen, J., M. Jawaid, P. Amuthakkannan, and M. Chandrasekar. "Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites." In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-08-102292-4.00021-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chandra Chakraborty, Bikash. "FRP for Marine Application." In Fiber-Reinforced Plastic [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.101332.

Full text
Abstract:
Fiber Reinforced Plastics (FRPs) are widely used in marine sector owing to their high specific strength and resistance to marine corrosion. For naval application, additional advantages are transparency to radar wave and better vibration damping than metals. The use of various FRPs in off-shore structures and marine vessels needs analysis of desired properties considering the types of matrices and fiber. The common consideration is effect of sea water on the properties of the FRP. This chapter gives a brief on use of different FRPs in various areas such as off-shore pillars, Reinforced Cement Concrete (RCC) enclosers, primary and secondary marine components. A brief discussion is included here on diffusion models and estimation of durability by a time-temperature superposition principle applied to water ingress and corresponding change in mechanical strength of FRPs with examples. The effect of microbial activity on the damage of FRP is not very much reported in literature. It is known that sulfate-reducing bacteria (SRB) are the most damaging microbes for FRP. In conclusion, it is highlighted that vinyl-ester-based FRPs using glass and carbon fibers are best for marine application. To determine the realistic service life in marine environment, Vinyl Ester- FRP (VE-FRP) are to be simultaneously studied for damage due to sea water and the microbes such SRB.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Fiber-reinforced plastics – Mechanical properties – Testing"

1

Prakash, Raghu V., and Vishnu Viswanath. "Effect of Moisture Absorption on the Tensile and Flexural Properties of Glass Fiber Reinforced Composite Materials." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-69865.

Full text
Abstract:
Abstract The use of Glass fiber reinforced plastics (GFRP) in underwater applications has been increasing in recent times, due to its superior durability and chemical stability in corrosive environments compared to metals. However, penetration of moisture in to the polymer matrix can adversely affect the mechanical properties of composite materials. In this study, the effect of exposure to plain water and simulated sea water (3.5% by weight NaCl salt) water on the mechanical properties of GFRP specimens has been analyzed. Tensile and three point bend tests were conducted on composite specimens with different moisture contents to characterize the mechanical degradation due to moisture absorption. Gravimetric tests were conducted on specimens to calculate the moisture absorption parameters. The results indicate that plain water is absorbed at a faster rate compared to salt water. Using these parameters, a transient moisture diffusion model was developed using commercial finite element software ABAQUS®. The results of tensile and three point bend testing indicate that both tensile and flexural properties of glass fiber reinforced epoxy composites degrade with exposure to plain water and salt water. Further, a coupled hygro-mechanical model was developed in ABAQUS® and the simulation results were compared with actual test results. Scanning electron Microscopy was used to examine the fracture surface of failed specimens. The cause for mechanical degradation seems to be the deterioration of fiber-matrix interface due to the penetration of water molecules.
APA, Harvard, Vancouver, ISO, and other styles
2

Ichikawa, Daiki, Masayuki Kitamura, Yuqiu Yang, and Hiroyuki Hamada. "Mechanical Properties of the Multilayer Laminated Intra-Hybrid Woven Fabric Composites." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37864.

Full text
Abstract:
Generally hybrid composite material is with two or more reinforcements or matrixes. They are referred as hybrid matrix and fiber hybrid. Further it is also included hybrid interface using different materials state of the interface. Therefore high functionality which compensates the disadvantages of each other by a hybrid can be expected. At current study, additionally, various strengthening forms were obtained and spread to textile material with hybrid(s). For example, techniques used in the weft and warp fibers/yarns might be different in making a fabric. It will be referred to as intra-layer hybrid fabric. It means in making fabric. It means that different physical properties due to the loading direction in one layer, the mechanical properties unique variety can be expected. In this study, carbon/glass intra-hybrid woven fabric was used to fabricate fiber reinforced plastic (FRP) composite through hand lay-up method. Then, the investigation on the mechanical property and fracture behaviour was carried out. Tensile test combined with acoustic emission (AE) measurement was conducted in this research. Knee point stress was the main factor of initial damage which discussed with AE characteristics during mechanical test. Due to the difference of energy release from fracture between glass fiber and matrix, the fracture characteristics of composite could be monitored during the test through AE facility. Relation between bundle and cracks inside the materials was examined through optical microscope. Scanning electron microscope observation was also carried out to examine the fracture of materials after testing.
APA, Harvard, Vancouver, ISO, and other styles
3

Ono, Keisuke, Yoshimichi Fujii, and Akihiro Wada. "Investigation of Non-Destructive Examination for Mechanical Damage of FRP." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52706.

Full text
Abstract:
Nowadays, fiber reinforced plastic (FRP) has been widely used in many areas such as auto mobile, airplane and marine vessel due to its high specific strength, good corrosion resistance, relatively low cost and so on. However, it still remains unknown that what kind of damage will happen in the internal structure when an automobile, which is made from FRP, has a slight impact with something such as a wall. Then the following road safety of the automobile cannot be guaranteed because certain parts may be exposed to damage in what seems even like a slight impact. In addition, it is well known that initial fracture can bring damage and great effect to the mechanical properties of the FRP material. The novelty of this paper is that the object of this research is micro crack such as transverse crack. While, almost previous report is aimed at delamination. Actually, before the delamination happens, micro crack has already occurred. The mechanical property of FRP is beginning to decrease by delamination. However, when the delamination occurred in the FRP is examined, it is already too late because the delamination can bring great influence to the safety of the FRP products. Therefore, it is important to investigate and detect the presence of micro crack with ultrasonic wave. In this way, some accidents might be avoided. While, because of the variety of the constraints in the fracture mechanism, the damage behavior is very difficult to evaluate and there are rarely researches and data on it. Although damage assessment by visual observation and the durable service life on FRP has become a general tendency in these recent years, the appropriate way of non-destructive examination has not been confirmed yet. The purpose of this study is to investigate the possibility of non-destructive examination with ultrasonic wave testing for mechanical damage of glass fiber reinforced plastics (GFRP). The possibility of dividing of Lamb wave modes by reducing the thickness of samples was confirmed and the variance of distribution of frequency of S0 mode wave by micro fracture in GFRP.
APA, Harvard, Vancouver, ISO, and other styles
4

Gahan, Kevan W. F., and John P. Parmigiani. "Monotonic and Fatigue Testing of Polymer and Composite Materials Used in Heavy Duty Trucks." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11680.

Full text
Abstract:
Abstract Improved material models for engineered polymer and composite materials including both monotonic and fatigue characteristics are necessary for creating more accurate digital simulations for heavy duty trucks. Unlike steel and other alloys that are commonly included in truck designs, these advanced polymer materials do not have pre-existing fatigue characteristic data. Additionally, there are no individual standard test procedures that can be commonly cited and followed during a research program. These materials are found in hoods, dashboards, body panels and splash shields of trucks, and are subject to cyclic loading conditions at various amplitudes and durations throughout the entire use or “duty cycle” of the vehicle. The applied loads vary between truck models, as some trucks will be used for vocational purposes and others will remain on the highway. This paper describes the testing of isotropic non-reinforced, and anisotropic glass-fiber-reinforced polymers and the subsequent calculation of the monotonic and fatigue properties that are needed to describe their behavior under various loading conditions. Material characteristics are measured using a series of constant amplitude strain-controlled fatigue tests that follow standard practices from ASTM D638 (Standard Test Method for Tensile Properties of Plastics), ASTM E606 (Standard Practice for Strain-Controlled Fatigue Testing) methods, and SAE J1099 (Technical Report on Low Cycle Fatigue Properties of Ferrous and Non-Ferrous Materials). The ASTM D638 Type 1 coupon geometry is used for all materials, with a varied sample thickness and length. An axial extensometer is incorporated to measure strain data through the duration of all tests, and an anti-buckling fixture is installed during cyclic tests to eliminate any bending in the specimen during the compressive portion of the fully-reversed waveform. A transverse extensometer is also installed on the gauge length of the material coupons to measure instantaneous cross-sectional area as well as Poisson’s ratio during monotonic testing. The data collected through the monotonic testing procedure is used to calculate Young’s Modulus, Poisson’s ratio, ultimate tensile strength, elongation (% strain), yield strength and strain, and true fracture strength and strain. The fatigue testing procedure yields data that can be used to calculate the fatigue strength coefficient (σf′), fatigue strength exponent (b), fatigue ductility coefficient (εf′), and fatigue ductility exponent (c). These parameters provide accurate stress-strain, cyclic stress-strain, and strain-life curves for the materials in question. A method will also be suggested for calculating the stress-life fatigue parameters, stress range intercept and slope, from the strain-controlled data. Furthermore, mold-flow analysis is applied to predict general orientation of the reinforcement fibers induced by the direction of material flow as a part is injection-molded. The calculated monotonic and fatigue parameters in conjunction with mold-flow analysis can immediately be applied within digital s imulations, allowing improved accuracy in life-expectancy estimations for truck parts.
APA, Harvard, Vancouver, ISO, and other styles
5

Kale, Sandip, and Jagadeesh Hugar. "Static Strength Design of Small Wind Turbine Blade Using Finite Element Analysis and Testing." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53485.

Full text
Abstract:
Today, wind power has become the most accepted renewable energy source and contributing major share in renewable energy market. Large wind turbines are now producing power effectively and delivering satisfactory performance to satisfy researchers, scientists, investors and governments. Large wind turbine technology has achieved respectable position across the globe. In addition to large wind turbine technology, it is observed that small wind technology has started movement toward a satisfactory growth. A considerable growth is forecasted by many experts in coming decades. The small wind turbine technology can be accepted by market if industry will provide small wind turbines with good desirable characteristics. Self starting behavior at a low wind speed, affordable compatible cost, maintenance free wind turbine system, low weight, reliable and satisfactory performance in low wind will always receive significant attraction of people for various applications. Low weight tower-top system and hence supporting structure, light weight and efficient generator, rotor’s ability to efficient wind to mechanical energy conversion and components manufacturing simplicity are also always expected by wind turbine users. This work is one of the attempts to design and develop a blade for small wind turbine in the line of objectives stated. Wind turbine blade is most important element in wind turbine system which converts wind energy in to mechanical energy. In addition to efficient aerodynamic blade design its strength design is also important so that it can withstand against various loads acting on it. Wind turbine blades strength has been analyzed by different researchers by conducting their static and fatigue testing. The objective of present work is to perform static strength test for newly developed blade of 1.5 m length. This newly developed blade consists of two new airfoils. A thick airfoil is used at the root and thin airfoil is used for remaining sections. The different loads acting on the blade are calculated using Blade Element Momentum theory at survival wind speed. It is decided to manufacture this blade using glass fiber reinforced plastic. The properties of material combination used are determined as per ASTM norms. The computational strength analysis is carried out using ANSYS. During this analysis blade is considered as a cantilever beam and equivalent load is applied. The blade is also tested experimentally using strain gauges. From both result analyses, it is found that developed blade is capable to take various loads acting on wind turbine blade at survival wind speed.
APA, Harvard, Vancouver, ISO, and other styles
6

Kavitha, Nijagal Shanthaveeraradhya, and Raghu V. Prakash. "Investigation of Scaling Effects on Post-Fatigue Residual Strength of Nanoclay Added GFRP Composites." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62916.

Full text
Abstract:
This paper describes the evaluation of post-fatigue residual strength of scaled laminated composites. The effect of thickness size effects of two scaled specimens on residual strength and stiffness of glass fiber reinforced plastic (GFRP) laminate with neat epoxy matrix and Nanoclay (Nanomer® I.30E) containing epoxy matrix are presented in this paper. The residual strength of a both scaled GFRP specimens with neat epoxy matrix and containing Nanoclay of 3% is determined by conducting tensile test on fatigue cycled after 2,00,000 cycles (R = 0.1). Tensile strength, residual strength and stiffness of both scaled specimens are compared with baseline or standard specimen of 4mm thick. The strength of thicker specimen (4 mm) is less compared to thinner (3mm and 2mm) specimens. The loss in strength due to fatigue loading varies with thickness of specimens, depends on the stiffness of the specimens. This complicates the transfer of mechanical properties from small scale specimen testing to use in the design of large scale structures. The stiffness increases in ply level scaled specimens and decreases in sublaminate level scaled specimens with addition of Nanoclay compared to pure epoxy matrix. The reduction in residual strength is same for different thicknesses of scaled nano-composite specimens. There is a potential in reducing scaling effects in composites with the addition of Nanoclay in matrix.
APA, Harvard, Vancouver, ISO, and other styles
7

Patra, Subir, Sourav Banerjee, Ed Habtour, and Robert Haynes. "A Novel Ultrasonic Technique for the Detection of Distributed Precursor Damages in Composites." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67784.

Full text
Abstract:
Detection of the initial stage of the distributed damage which we call the damage precursor in the composites namely matrix micro cracking and fiber breakage, are extremely important for diagnostic and prognostic of the material. However, existing nondestructive evaluation (NDE) and/or structural health monitoring (SHM) system are not efficient to detect such damages and often demand transformative approach over the existing techniques. Here, we present a novel ultrasonic method for identification of the distribution of the probable damage sites as an indication of the percentage of degradation of the material properties on a typical representative volume element (RVE). An American Society of Testing and Materials (ASTM) standard unidirectional (UD) carbon-fiber-reinforced-plastic (CFRP) specimen was tested under 250,000 cycles mechanical loading and 500 cycles thermal loading. Scanning Acoustic Microcopy (SAM) was used to perform Z-scan of the specimen on a particular area (6mm×6mm) of the specimen. Surface skimming ultrasonic wave velocity (SAW) profile on a representative volume element (RVE) was calculated before and after loading the specimen. A 2D map of decreased SAW regions were calculated after the loading. Statistical analysis of the SAW profile was performed to study the distributed damage evolution in the material. It is found that the damaged regions often coalesce as loading cycle increases and such sites can be predicted from the SAW profile. In addition, we also presented a nonlocal mechanics based ultrasonic technique to study damage evolution with thermomechanical loading. Nonlocal parameters were also calculated on the selected RVE by using Quasi-longitudinal wave velocity along the thickness direction. Using micro-morphic wave dispersion curve, for a selected frequency at 50 MHz. Damage Entropy (DE) was calculated from the distribution of the nonlocal parameter. We also performed optical microcopy (OM) of the selected area to investigate the development of the damages and to validate the SAW results. This work has potential to estimate the remaining useful life of the structure and provide useful information about the distributed damages states, which in turn will help Condition Based Maintenance (CBM+) of the critical locations of the structure while maintaining the aircrafts and the defense equipment.
APA, Harvard, Vancouver, ISO, and other styles
8

Cho, G., Y. Park, and Y. Shim. "Effects of Scrap Size on Mechanical Properties of Recycled Carbon Fiber Reinforced Plastics." In CAMX 2022. NA SAMPE, 2022. http://dx.doi.org/10.33599/nasampe/c.22.0053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wicks, Sunny, Kyoko Ishiguro, Roberto Guzman de Villoria, and Brian Wardle. "Mechanical Properties of Infusion-Processed Fiber Reinforced Plastics with In Situ-Grown Aligned Carbon Nanotubes." In 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
18th AIAA/ASME/AHS Adaptive Structures Conference
12th
. American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-2569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

MIYAKITA, NAOTO, KAZUYA OKUBO, KIYATAKA OBUNAI, and KAZUYA YANAGITA. "Effective Diameter of Added Glass Fiber into Matrix of Carbon-fiber Reinforced Thermo-Plastics for Improving Mechanical Properties." In American Society for Composites 2018. DEStech Publications, Inc., 2018. http://dx.doi.org/10.12783/asc33/26153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography