Academic literature on the topic 'Fibre reinforced concrete'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fibre reinforced concrete.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fibre reinforced concrete"
Lie, T. T., and V. K. R. Kodur. "Thermal and mechanical properties of steel-fibre-reinforced concrete at elevated temperatures." Canadian Journal of Civil Engineering 23, no. 2 (April 1, 1996): 511–17. http://dx.doi.org/10.1139/l96-055.
Full textJagtap, Siddhant Millind, Shailesh Kalidas Rathod, Rohit Umesh Jadhav, Prathamesh Nitin Patil, Atharva Shashikant Patil, Ashwini M. Kadam, and P. G. Chavan. "Fibre Mesh in Reinforced Slabs." International Journal for Research in Applied Science and Engineering Technology 10, no. 5 (May 31, 2022): 3539–40. http://dx.doi.org/10.22214/ijraset.2022.42986.
Full textHasham, Md, V. Reddy Srinivasa, M. V. Seshagiri Rao, and S. Shrihari. "Flexural behaviour of basalt fibred concrete slabs made with basalt fibre reinforced polymer rebars." E3S Web of Conferences 309 (2021): 01055. http://dx.doi.org/10.1051/e3sconf/202130901055.
Full textMore, Florence More Dattu Shanker, and Senthil Selvan Subramanian. "Impact of Fibres on the Mechanical and Durable Behaviour of Fibre-Reinforced Concrete." Buildings 12, no. 9 (September 13, 2022): 1436. http://dx.doi.org/10.3390/buildings12091436.
Full textLi, Fang-Yuan, Liu-Yang Li, Yan Dang, and Pei-Feng Wu. "Study of the Effect of Fibre Orientation on Artificially Directed Steel Fibre-Reinforced Concrete." Advances in Materials Science and Engineering 2018 (2018): 1–11. http://dx.doi.org/10.1155/2018/8657083.
Full textGoud, E. Giri Prasad, Dinesh Singh, V. Srinivasa Reddy, and Kaveli Jagannath Reddy. "Stress-Strain behaviour of basalt fibre reinforced concrete." E3S Web of Conferences 184 (2020): 01081. http://dx.doi.org/10.1051/e3sconf/202018401081.
Full textAslani, Farhad, Yinong Liu, and Yu Wang. "Flexural and toughness properties of NiTi shape memory alloy, polypropylene and steel fibres in self-compacting concrete." Journal of Intelligent Material Systems and Structures 31, no. 1 (October 5, 2019): 3–16. http://dx.doi.org/10.1177/1045389x19880613.
Full textAbdullah, Muhd Afiq Hizami, Mohd Zulham Affandi Mohd Zahid, Badorul Hisham Abu Bakar, Fadzli Mohamed Nazri, and Afizah Ayob. "UHPFRC as Repair Material for Fire-Damaged Reinforced Concrete Structure – A Review." Applied Mechanics and Materials 802 (October 2015): 283–89. http://dx.doi.org/10.4028/www.scientific.net/amm.802.283.
Full textJothi Jayakumar, Vikram, and Sivakumar Anandan. "Composite Strain Hardening Properties of High Performance Hybrid Fibre Reinforced Concrete." Advances in Civil Engineering 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/363649.
Full textAnnamaneni, Krishna Kiran, Bhumika Vallabhbhai Dobariya, and Krasnikovs Andrejs. "CONCRETE, REINFORCED BY CARBON FIBRE COMPOSITE STRUCTURE, LOAD BEARING CAPACITY DURING CRACKING." ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference 2 (June 17, 2021): 232–37. http://dx.doi.org/10.17770/etr2021vol2.6655.
Full textDissertations / Theses on the topic "Fibre reinforced concrete"
Deveau, Adrien Joseph. "Fibre-reinforced expansive concrete." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0019/MQ45858.pdf.
Full textBaczkowski, Bartlomiej Jan. "Steel fibre reinforced concrete coupling beams /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202007%20BACZKO.
Full textArmstrong, Paul John. "Projectile penetration into fibre reinforced concrete." Thesis, University of Sheffield, 1987. http://etheses.whiterose.ac.uk/10217/.
Full textBarris, Peña Cristina. "Serviceability behaviour of fibre reinforced polymer reinforced concrete beams." Doctoral thesis, Universitat de Girona, 2011. http://hdl.handle.net/10803/7772.
Full textSe presentan los aspectos principales que influyen en los estados límites de servicio: tensiones de los materiales, ancho máximo de fisura y flecha máxima permitida. Se presenta una metodología para el diseño de dichos elementos bajo las condiciones de servicio. El procedimiento presentado permite optimizar las dimensiones de la sección respecto a metodologías más generales.
Fibre reinforced polymer (FRP) bars have emerged as an alternative to steel for reinforced concrete (RC) elements in aggressive environments due to their non-corrosive properties. This study investigates the short-term serviceability behaviour of FRP RC beams through theoretical and experimental analysis. Twenty-six RC beams reinforced with glass-FRP (GFRP) and one steel RC beam are tested under four-point loading. The experimental results are discussed and compared to some of the most representative prediction models of deflections and cracking for steel and FRP RC finding that prediction models generally provide adequate values up to the service load. Additionally, cracked section analysis (CSA) is used to analyse the flexural behaviour of the specimens until failure. CSA estimates the ultimate load with accuracy, but it underestimates the experimental deflection beyond the service load level. This increment is mainly attributed in this work to shear induced deflection and it is experimentally calculated.
A discussion on the main aspects of the SLS of FRP RC is introduced: the stresses in materials, maximum crack width and the allowable deflection. A methodology for the design of FRP RC at the serviceability requirements is presented, which allows optimizing the overall depth of the element with respect to more generalised methodologies.
Al-Azzawi, Bakr. "Fatigue of reinforced concrete beams retrofitted with ultra-high performance fibre- reinforced concrete." Thesis, Cardiff University, 2018. http://orca.cf.ac.uk/108101/.
Full textBabafemi, Adewumi John. "Tensile creep of cracked macro synthetic fibre reinforced concrete." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96679.
Full textENGLISH ABSTRACT: Macro synthetic fibres are known to significantly improve the toughness and energy absorption capacity of conventional concrete in the short term. However, since macro synthetic fibre are flexible and have relatively low modulus of elastic compared to steel fibres, it is uncertain if the improved toughness and energy absorption could be sustained over a long time, particularly under sustained tensile loadings. The main goal of this study is to investigate the time-dependent crack mouth opening response of macro synthetic fibre reinforced concrete (FRC) under sustained uniaxial tensile loadings, and to simulate the flexural creep behaviour. For the purpose of simulating the in-service time-dependent condition, all specimens were pre-cracked. Experimental investigations were carried out at three levels (macro, single fibre and structural) to investigate the time-dependent behaviour and the mechanisms causing it. At the macro level, compressive strength, uniaxial tensile strength and uniaxial tensile creep test at 30 % to 70 % stress levels of the average residual tensile strength were performed. To understand the mechanism causing the time-dependent response, fibre tensile test, single fibre pullout rate test, time-dependent fibre pullout test and fibre creep test were done. Flexural test and flexural creep test were done to simulate the structural level performance. The results of this investigation have shown significant drop in stress and increase in crack width of uniaxial tensile specimens after the first crack. The post cracking response has shown significant toughness and energy absorption capacity. Under sustained load at different stress levels, significant crack opening has been recorded for a period of 8 month even at a low stress level of 30 %. Creep fracture of specimens occurred at 60 % and 70 % indicating that these stress levels are not sustainable for cracked macro synthetic FRC. The single fibre level investigations have revealed two mechanisms responsible for the time-dependent crack widening of cracked macro synthetic FRC under sustained loading: time-dependent fibre pullout and fibre creep. In all cases of investigation, fibre failure was by complete pullout without rupture. Flexural creep results have shown that the crack opening increases over time. After 8 months of investigation, the total crack opening was 0.2 mm and 0.5 mm at 30 % and 50 % stress levels respectively. Since the crack opening of tensile creep and flexural creep specimens cannot be compared due to differences in geometry, specimen size, load transfer mechanisms and stress distribution in the cracked plane, a finite element analysis (FEA) was conducted. Material model parameters obtained from the uniaxial tensile test and viscoelastic parameters from curve fitting to experimental uniaxial creep results have been implemented to successfully predict the time-dependent crack opening of specimens subjected to sustained flexural loading. Analyses results correspond well with experimental result at both 30 % and 50 % stress levels.
AFRIKAANSE OPSOMMING: Makro sintetiese vesels is bekend daarvoor dat dit die taaiheid en energie absorpsie van konvensionele beton beduidend verbeter in die kort termyn. Aangesien makro sintetiese vesels buigsaam is met 'n relatiewe lae styfheidsmodulus in vergeleke met staalvesels, is dit onseker of die verhoogde kapasiteit vir energie absorpsie en taaiheid volgehou kan word oor die langer termyn, veral in gevalle waar dit aan volgehoue trekkragte blootgestel is. Die hoofdoel van die studie is om die tydafhanklike-kraakvergrotingsgedrag van makro sintetiese veselversterkte beton (VVB) wat blootgestel is aan volgehoue trekkragte te ondersoek asook die simulasie van die kruipgedrag in buig. Ten einde die werklike toetstande te simuleer is al die proefstukke doelbewus gekraak in 'n beheerde manier voor die aanvang van die toetse. Die eksperimentele ondersoek is uitgevoer op drie vlakke (makro, enkelvesel en strukturele) om die tydafhanklike gedrag sowel as die meganismes verantwoordelik vir hierdie gedrag te ondersoek. Op die makro-vlak is druktoetse gedoen saam met eenassige trek- en eenassige kruiptoetse met belastings tussen 30 % en 70 % van die gemiddelde residuele treksterkte. Om die meganisme wat die tydafhanklike gedrag veroorsaak te verstaan is veseltoetse, enkel vesel uittrektoetse, enkel vesel uittrek kruiptoetse asook kruiptoetse op vesels gedoen. Buigtoetse en buig kruiptoetse is ook gedoen om die gedrag op die strukturele vlak te ondersoek. Die resultate van hierdie ondersoek wys dat daar 'n beduidende val in spanning is en dat daar gepaardgaande kraak opening in die eenassige trek proefstukke plaasgevind het na die vorming van 'n kraak. Die na-kraak gedrag wys beduidende taaiheid en energie absorpsie kapasiteit. Gedurende die volgehoue trekbelasting by verskillende spanningsvlakke is beduidende kraakvergroting opgemerk, selfs by 30 % belasting na 8 maande. Kruipfaling het plaasgevind by proefstukke met belastings van 60 % en 70 % wat daarop wys dat hierdie spanningsvlakke nie geskik is vir gekraakte makro sintetiese VVB nie. Op die enkel veselvlak is twee meganismes geïdentifiseer wat verantwoordelik is vir die kraakvergroting oor tyd vir gekraakte makro sintetiese VVB met volgehoue trekbelasting: tydafhanklike vesel uittrek en vesel-kruip. In alle gevalle in hierdie ondersoek was die falingsmeganisme vesels wat uittrek. Buig kruiptoets resultate wys dat die krake vergroot oor tyd. Na 8 maande van ondersoek was die kraakwydtes 0.2 mm en 0.5 mm by 30 % en 50 % spanningsvlakke onderskeidelik. Aangesien die kraak opening van eenassige trek kruiptoetse en die buig kruiptoetse nie direk met mekaar vergelyk kan word nie weens die verskille in geometrie, proefstuk grootte en spanningsverdeling in die kraakvlak, is 'n eindige element analises (EEA) gedoen. Materiaal eienskappe is bepaal deur gebruik te maak van die eenassige kruip trektoets se resultate en viskoelastiese parameters is bepaal deur middel van kurwepassing van die resultate. Dit was gebruik om suksesvol die buig kruip kraak opening gedrag te simuleer. Die analises se resultate vergelyk goed met die eksperimentele data by beide 30 % en 50 % spanningsvlakke.
Kahanji, Charles. "Fire performance of ultra-high performance fibre reinforced concrete beams." Thesis, Ulster University, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709889.
Full textFisher, Alex K. "Durability design parameters for cellulose fibre reinforced concrete pipes in aggressive environments." Thesis, Queensland University of Technology, 2003.
Find full textBadr, Atef Samir M. "Performance of advanced polypropylene fibre reinforced concrete." Thesis, University of Leeds, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437106.
Full textDarwish, I. Y. S. "Steel fibre-reinforced concrete elements in shear." Thesis, Bucks New University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375129.
Full textBooks on the topic "Fibre reinforced concrete"
Deveau, Adrien Joseph. Fibre reinforced expansive concrete. Ottawa: National Library of Canada, 1998.
Find full textVares, Sirje. Cellulose fibre concrete. Espoo, Finland: Technical Research Centre of Finland, 1997.
Find full textVares, Sirje. Fibre-reinforced high-strength concrete. Espoo, Finland: Technical Research Centre of Finland, 1993.
Find full textSerna, Pedro, Aitor Llano-Torre, José R. Martí-Vargas, and Juan Navarro-Gregori, eds. Fibre Reinforced Concrete: Improvements and Innovations. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58482-5.
Full textSerna, Pedro, Aitor Llano-Torre, José R. Martí-Vargas, and Juan Navarro-Gregori, eds. Fibre Reinforced Concrete: Improvements and Innovations II. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-83719-8.
Full textLanu, Matti. Testing fibre-reinforced concrete in some structural applications. Espoo, Finland: Technical Research Centre of Finland, 1995.
Find full textN, Swamy R., and Barr B, eds. Fibre reinforced cements and concretes: Recent developments. London: Elsevier Applied Science, 1989.
Find full textSociety, Concrete. Guidance for the design of steel-fibre-reinforced concrete. Camberley: Concrete Society, 2007.
Find full textJ, Burgoyne C., ed. FRPRCS-5: Fibre-reinforced plastics for reinforced concrete structures : proceedings of the Fifth International Conference on Fibre-Reinforced Plastics for Reinforced Concrete Structures, Cambridge, UK, 16-18 July 2001. London: Thomas Telford, 2001.
Find full textInternational Symposium on Fiber Reinforced Concrete (1987 Madras, India). Proceedings of the International Symposium on Fibre Reinforced Concrete, Madras, India, December 16-19, 1987. gow Delhi: Oxford & IBH Pub. Co., 1987.
Find full textBook chapters on the topic "Fibre reinforced concrete"
Llano-Torre, Aitor, and Pedro Serna. "Fibre Reinforced Concrete Characterization." In Round-Robin Test on Creep Behaviour in Cracked Sections of FRC: Experimental Program, Results and Database Analysis, 19–29. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72736-9_3.
Full textGrimaldi, Antonio, and Raimondo Luciano. "Modelling of Fibre Reinforced Concrete." In Novel Approaches in Civil Engineering, 285–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-45287-4_24.
Full textHannant, D. J. "Fibre-reinforced concrete." In Advanced Concrete Technology, 1–17. Elsevier, 2003. http://dx.doi.org/10.1016/b978-075065686-3/50292-5.
Full text"Fibre-Reinforced Concrete." In Tailor Made Concrete Structures, 116–25. CRC Press, 2008. http://dx.doi.org/10.1201/9781439828410-22.
Full text"Fibre-reinforced concrete." In Modern Construction Handbook, 52–55. Birkhäuser, 2018. http://dx.doi.org/10.1515/9783035617085-008.
Full textKanstad, Terje. "Fibre reinforced concrete." In fib Bulletins, 18. fib. The International Federation for Structural Concrete, 2019. http://dx.doi.org/10.35789/fib.bull.0091.ch09.
Full text"Fibre-reinforced Concrete." In Construction Materials. Spon Press, 2001. http://dx.doi.org/10.4324/9780203478981.ch43.
Full text"7 Fibre reinforced concrete." In Modern Construction Handbook, 52–55. De Gruyter, 2022. http://dx.doi.org/10.1515/9783035624960-019.
Full text"Serviceability of members reinforced with fibre-reinforced polymers." In Concrete Structures, 481–97. CRC Press, 2018. http://dx.doi.org/10.1201/9781482289138-23.
Full textHegger, J., and N. Will. "Textile-reinforced concrete." In Textile Fibre Composites in Civil Engineering, 189–207. Elsevier, 2016. http://dx.doi.org/10.1016/b978-1-78242-446-8.00009-4.
Full textConference papers on the topic "Fibre reinforced concrete"
"Durability of Steel Fibre Reinforced Concrete." In SP-212: Sixth CANMET/ACI: Durability of Concrete. American Concrete Institute, 2003. http://dx.doi.org/10.14359/12715.
Full textRamkumar, S. "Shear Behaviour of Fiber Reinforced Concrete Beams Using Steel and Polypropylene Fiber." In Sustainable Materials and Smart Practices. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901953-21.
Full textVitt, G. "Steel fibre concrete industrial floors." In International RILEM Workshop on Test and Design Methods for Steelfibre Reinforced Concrete. RILEM Publications SARL, 2003. http://dx.doi.org/10.1617/2351580168.014.
Full textAlberti, M. "Shear behaviour of polyolefin and steel fibre-reinforced concrete." In 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures. IA-FraMCoS, 2019. http://dx.doi.org/10.21012/fc10.235614.
Full textYu, R. "Meshfree modelling of dynamic fracture in fibre reinforced concrete." In 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures. IA-FraMCoS, 2019. http://dx.doi.org/10.21012/fc10.235653.
Full textKaklauskas, Gintaris, Edgaras Timinskas, P. L. Ng, and Aleksandr Sokolov. "Deformation and Cracking Behaviour of Concrete Beams Reinforced with Glass Fibre-Reinforced Polymer Bars." In IABSE Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/guimaraes.2019.0500.
Full textRanjitham, M., S. Mohanraj, K. Ajithpandi, S. Akileswaran, and S. K. Deepika Sree. "Strength properties of coconut fibre reinforced concrete." In INTERNATIONAL CONFERENCE ON MATERIALS, MANUFACTURING AND MACHINING 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5117917.
Full text"Mechanical Properties of Bamboo Fibre Reinforced Concrete." In 2nd International Conference on Research in Science, Engineering and Technology. International Institute of Engineers, 2014. http://dx.doi.org/10.15242/iie.e0314522.
Full textKorneeva, I. G., and B. I. Pinus. "Dynamical stability of polypropylene fibre reinforced concrete." In SiliconPV 2021, The 11th International Conference on Crystalline Silicon Photovoltaics. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0091831.
Full textRichardson, Alan, and Daniel Tarbox. "Strengthening Concrete Beams Using Fibre Reinforced Polymer." In The Seventh International Structural Engineering and Construction Conference. Singapore: Research Publishing Services, 2013. http://dx.doi.org/10.3850/978-981-07-5354-2_m-74-563.
Full textReports on the topic "Fibre reinforced concrete"
Al-lami, Karrar. Experimental Investigation of Fiber Reinforced Concrete Beams. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2293.
Full textBrady, Pamalee A., and Orange S. Marshall. Shear Strengthening of Reinforced Concrete Beams Using Fiber-Reinforced Polymer Wraps. Fort Belvoir, VA: Defense Technical Information Center, October 1998. http://dx.doi.org/10.21236/ada359462.
Full textWeiss, Charles, William McGinley, Bradford Songer, Madeline Kuchinski, and Frank Kuchinski. Performance of active porcelain enamel coated fibers for fiber-reinforced concrete : the performance of active porcelain enamel coatings for fiber-reinforced concrete and fiber tests at the University of Louisville. Engineer Research and Development Center (U.S.), May 2021. http://dx.doi.org/10.21079/11681/40683.
Full textBank, Lawrence C., Anthony J. Lamanna, James C. Ray, and Gerardo I. Velazquez. Rapid Strengthening of Reinforced Concrete Beams with Mechanically Fastened, Fiber-Reinforced Polymeric Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, March 2002. http://dx.doi.org/10.21236/ada400415.
Full textMacFarlane, Eric Robert. Proposed Methodology for Design of Carbon Fiber Reinforced Polymer Spike Anchors into Reinforced Concrete. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1360687.
Full textGrimes, Hartley Ray. The Longitudinal Shear Behavior of Carbon Fiber Grid Reinforced Concrete Toppings. Precast/Prestressed Concrete Institute, 2009. http://dx.doi.org/10.15554/pci.rr.comp-010.
Full textYang, Hua, Faqi Liu, Yuyin Wang, and Sumei Zhang. FIRE RESISTANCE DESIGN OF CIRCULAR STEEL TUBE CONFINED REINFORCED CONCRETE COLUMNS. The Hong Kong Institute of Steel Construction, December 2018. http://dx.doi.org/10.18057/icass2018.p.094.
Full textHiggins, Christopher. Environmental Durability of Reinforced Concrete Deck Girders Strengthened for Shear with Surface Bonded Carbon Fiber-Reinforced Polymer. Portland State University Library, May 2009. http://dx.doi.org/10.15760/trec.21.
Full textRagalwar, Ketan, William Heard, Brett Williams, Dhanendra Kumar, and Ravi Ranade. On enhancing the mechanical behavior of ultra-high performance concrete through multi-scale fiber reinforcement. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41940.
Full textStarnes, Monica A., and Nicholas J. Carino. Infrared thermography for nondestructive evaluation of fiber reinforced polymer composites bonded to concrete. Gaithersburg, MD: National Institute of Standards and Technology, 2003. http://dx.doi.org/10.6028/nist.ir.6949.
Full text