Journal articles on the topic 'Field Dependence of Carrier Mobility'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Field Dependence of Carrier Mobility.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Tripathi, Durgesh C., K. Sudheendra Rao, Sunil Kumar, and Y. N. Mohapatra. "Impact of device structure on field dependence of carrier mobility." Synthetic Metals 278 (August 2021): 116835. http://dx.doi.org/10.1016/j.synthmet.2021.116835.
Full textPopov, V. P., and M. A. Ilnitsky. "Model of Nonuniform Channel for the Charge Carrier Transport in Nanoscale FETs." Advanced Materials Research 276 (July 2011): 59–65. http://dx.doi.org/10.4028/www.scientific.net/amr.276.59.
Full textHürner, Andreas, C. Bonse, G. Clemmer, et al. "Temperature and Electrical Field Dependence of the Ambipolar Mobility in N-Doped 4H-SiC." Materials Science Forum 778-780 (February 2014): 487–90. http://dx.doi.org/10.4028/www.scientific.net/msf.778-780.487.
Full textRaibaruah, Apurba Kumar, and Kaushik Chandra Deva Sarma. "Carrier Mobility Analysis of Parallel Gated Junctionless Field Effect Transistor." Journal of Nanoelectronics and Optoelectronics 17, no. 1 (2022): 1–12. http://dx.doi.org/10.1166/jno.2022.3163.
Full textShukri, Seyfan Kelil, and Lemi Demeyu Deja. "Charge Carriers Density, Temperature, and Electric Field Dependence of the Charge Carrier Mobility in Disordered Organic Semiconductors in Low Density Region." Condensed Matter 6, no. 4 (2021): 38. http://dx.doi.org/10.3390/condmat6040038.
Full textMilosevic, Milan, and Rifat Ramovic. "Analytical model of carrier mobility in a Polymer Field Effect Transistor." Chemical Industry 61, no. 2 (2007): 55–59. http://dx.doi.org/10.2298/hemind0702055m.
Full textReggiani, Susanna, Marina Valdinoci, Luigi Colalongo, Massimo Rudan, and Giorgio Baccarani. "An Analytical, Temperature-dependent Model for Majority- and Minority-carrier Mobility in Silicon Devices." VLSI Design 10, no. 4 (2000): 467–83. http://dx.doi.org/10.1155/2000/52147.
Full textŠašić, Rajko M., and P. M. Lukić. "Conduction Mechanism Based Model of Organic Field Effect Transistor Structure." Materials Science Forum 555 (September 2007): 125–30. http://dx.doi.org/10.4028/www.scientific.net/msf.555.125.
Full textNowak, Marian, Marcin Jesionek, Barbara Solecka, Piotr Szperlich, Piotr Duka, and Anna Starczewska. "Contactless photomagnetoelectric investigations of 2D semiconductors." Beilstein Journal of Nanotechnology 9 (October 25, 2018): 2741–49. http://dx.doi.org/10.3762/bjnano.9.256.
Full textAbdinov, A. Sh, R. F. Babaeva, and R. M. Rzayev. "Dependence of carrier mobility on an electric field in gallium selenide crystals." Semiconductors 46, no. 6 (2012): 730–35. http://dx.doi.org/10.1134/s1063782612060024.
Full textLiang, Y. L., L. G. Wang, C. G. Wang, G. C. Wang, and L. Zhang. "Carrier Density Dependence of the Mobility in Disordered Organic Semiconductors with Gaussian Disorder." Journal of Nanoelectronics and Optoelectronics 17, no. 7 (2022): 1098–103. http://dx.doi.org/10.1166/jno.2022.3284.
Full textSaurova, Tatiana, and Vladyslav Shpichenko. "DRIFT MOBILITY OF ELECTRONS IN INDIUM ANTIMONIDE IN THE WEAK ELECTRIC FIELD REGIME." Bulletin of Kyiv Polytechnic Institute. Series Instrument Making, no. 68(2) (December 26, 2024): 24–29. https://doi.org/10.20535/1970.68(2).2024.318188.
Full textMatsubara, Kohei, Kentaro Abe, Takaaki Manaka, and Mitsumasa Iwamoto. "Carrier Transport Mechanism in Single Crystalline Organic Semiconductor Thin Film Elucidated by Visualized Carrier Motion." Journal of Nanoscience and Nanotechnology 16, no. 4 (2016): 3388–93. http://dx.doi.org/10.1166/jnn.2016.12321.
Full textKim, Soohyun, Jungchun Kim, Doyoung Jang, et al. "Comparison of Temperature Dependent Carrier Transport in FinFET and Gate-All-Around Nanowire FET." Applied Sciences 10, no. 8 (2020): 2979. http://dx.doi.org/10.3390/app10082979.
Full textMozer, Attila J., and Niyazi Serdar Sariciftci. "Negative electric field dependence of charge carrier drift mobility in conjugated, semiconducting polymers." Chemical Physics Letters 389, no. 4-6 (2004): 438–42. http://dx.doi.org/10.1016/j.cplett.2004.04.001.
Full textZHU, M. "TEMPERATURE DEPENDENCE OF CARRIER MOBILITY IN EPITAXIAL THIN FILM La0.8Ca0.2MnO3/PbZr0.2Ti0.8O3 HETEROSTRUCTURE." Modern Physics Letters B 18, no. 21n22 (2004): 1119–25. http://dx.doi.org/10.1142/s0217984904007608.
Full textNEBEL, C. E., and R. A. STREET. "HIGH FIELD TRANSPORT IN a-Si:H." International Journal of Modern Physics B 07, no. 05 (1993): 1207–58. http://dx.doi.org/10.1142/s0217979293002304.
Full textLukić, P. M., R. M. Ramović, and Rajko M. Šašić. "Modeling and Investigation of SiGe Based MOSFET Structure Transport Characteristics." Materials Science Forum 555 (September 2007): 101–6. http://dx.doi.org/10.4028/www.scientific.net/msf.555.101.
Full textJakobsson, Mattias, and Sven Stafström. "Polaron effects and electric field dependence of the charge carrier mobility in conjugated polymers." Journal of Chemical Physics 135, no. 13 (2011): 134902. http://dx.doi.org/10.1063/1.3644931.
Full textXue-Yan, Tian, Xu Zheng, Zhao Su-Ling, et al. "Thickness dependence of surface morphology and charge carrier mobility in organic field-effect transistors." Chinese Physics B 19, no. 1 (2010): 018103–7. http://dx.doi.org/10.1088/1674-1056/19/1/018103.
Full textNisikawa, Tomoyuki, Naoki Moriguchi, Takashi Anezaki, Akira Unno, Masaru Tachibana, and Kenichi Kojima. "Contact Pressure Dependence of Carrier Mobility in Cleaved Tetracene Single-Crystal Field-Effect Transistors." Japanese Journal of Applied Physics 45, no. 6A (2006): 5238–40. http://dx.doi.org/10.1143/jjap.45.5238.
Full textButko A. V., Butko V. Y., and Kumzerov Y. A. "Dependence of charge carrier mobility in hybrid nanostructures at the interface of graphene and molecular ions on their charge density." Physics of the Solid State 63, no. 13 (2022): 1820. http://dx.doi.org/10.21883/pss.2022.13.52327.141.
Full textChen, Zheng, Yuan Liu, Hui Zhang, et al. "Electric field control of superconductivity at the LaAlO3/KTaO3(111) interface." Science 372, no. 6543 (2021): 721–24. http://dx.doi.org/10.1126/science.abb3848.
Full textJuška, Gytis, Kęstutis Arlauskas, and Kristijonas Genevičius. "Charge carrier transport and recombination in disordered materials." Lithuanian Journal of Physics 56, no. 3 (2016): 182–89. http://dx.doi.org/10.3952/physics.v56i3.3367.
Full textAMIN, N. AZIZIAH, ZAHARAH JOHARI, MOHAMMAD TAGHI AHMADI, and RAZALI ISMAIL. "LOW-FIELD MOBILITY MODEL ON PARABOLIC BAND ENERGY OF GRAPHENE NANORIBBON." Modern Physics Letters B 25, no. 04 (2011): 281–90. http://dx.doi.org/10.1142/s0217984911025584.
Full textJiang, Hui, Ke Jie Tan, Keke K. Zhang, Xiaodong Chen, and Christian Kloc. "Ultrathin organic single crystals: fabrication, field-effect transistors and thickness dependence of charge carrier mobility." Journal of Materials Chemistry 21, no. 13 (2011): 4771. http://dx.doi.org/10.1039/c0jm04383d.
Full textWu, A. T., S. W. Lee, T. Y. Chan, and V. Murali. "Temperature and field dependence of carrier mobility in MOSFETs with reoxidized nitrided oxide gate dielectrics." Solid-State Electronics 35, no. 1 (1992): 27–32. http://dx.doi.org/10.1016/0038-1101(92)90299-r.
Full textYe, Hansheng, Mikhail Gaevski, Grigory Simin, Asif Khan, and Patrick Fay. "Electron mobility and velocity in Al0.45Ga0.55N-channel ultra-wide bandgap HEMTs at high temperatures for RF power applications." Applied Physics Letters 120, no. 10 (2022): 103505. http://dx.doi.org/10.1063/5.0084022.
Full textOkada, Jun, Takashi Nagase, Takashi Kobayashi, and Hiroyoshi Naito. "Temperature Dependence of Field-Effect Mobility in Organic Thin-Film Transistors: Similarity to Inorganic Transistors." Journal of Nanoscience and Nanotechnology 16, no. 4 (2016): 3219–22. http://dx.doi.org/10.1166/jnn.2016.12297.
Full textKhanh, Nguyen Quoc, and Mai Thanh Huyen. "Transport Properties of A Quasi-two-dimensional Electron Gas in InP/In\(_{1 - x}\)Ga\(_{x}\)As/InP Quantum Wells : Correlation and Magnetic Field Effects." Communications in Physics 25, no. 2 (2015): 125. http://dx.doi.org/10.15625/0868-3166/25/2/4668.
Full textLEI, X. L., N. J. M. HORING, H. L. CUI, and K. K. THORNBER. "ANOMALOUS FREQUENCY DEPENDENCE OF DIFFERENTIAL MOBILITY IN SUPERLATTICE MINIBAND TRANSPORT." Modern Physics Letters B 10, no. 01n02 (1996): 51–60. http://dx.doi.org/10.1142/s0217984996000092.
Full textJun, Li, Sun Jiu-Xun, and Chang Zhao. "Improved expression of charge-carrier mobility in disordered semiconducting polymers considering dependence on temperature, electric field and charge-carrier density." Synthetic Metals 159, no. 19-20 (2009): 1915–21. http://dx.doi.org/10.1016/j.synthmet.2009.07.007.
Full textChowdhury, Md. Iqbal Bahar. "Base Transit Time Modeling of Gaussian-Doped SiGe HBT Considering Field-Dependence of Mobility." INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 4, no. 1 (2016): 53–59. https://doi.org/10.5281/zenodo.15315518.
Full textPetrovic, Jovana, Petar Matavulj, Qi Difei, and Sandra Selmic. "Charge carrier recombination in the ITO/PEDOT:PSS/MEH-PPV/Al photodetector." Chemical Industry 63, no. 3 (2009): 177–81. http://dx.doi.org/10.2298/hemind0903177p.
Full textKovalenko, Konstantin L., Sergei I. Kozlovskiy, Nicolai N. Sharan, and Eugeniy F. Venger. "Low field mobility in bulk GaN and its ternary AlGaN/GaN compounds (quantum kinetic approach)." Journal of Physics: Condensed Matter 36, no. 32 (2024): 325705. http://dx.doi.org/10.1088/1361-648x/ad44fb.
Full textBabel, Amit, and Samson A. Jenekhe. "Alkyl chain length dependence of the field-effect carrier mobility in regioregular poly(3-alkylthiophene)s." Synthetic Metals 148, no. 2 (2005): 169–73. http://dx.doi.org/10.1016/j.synthmet.2004.09.033.
Full textHarrysson Rodrigues, Isabel, Andrey Generalov, Miika Soikkeli, Anton Murros, Sanna Arpiainen, and Andrei Vorobiev. "Geometrical magnetoresistance effect and mobility in graphene field-effect transistors." Applied Physics Letters 121, no. 1 (2022): 013502. http://dx.doi.org/10.1063/5.0088564.
Full textRoldán, J. B., F. Gámiz, and J. A. López-Villanueva. "Development of a Method for Determining the Dependence of the Electron Mobility on the Longitudinal-Electric Field in MOSFETs." VLSI Design 8, no. 1-4 (1998): 261–64. http://dx.doi.org/10.1155/1998/52301.
Full textS., M.Moududul Islam, Arafat Yeasir, Ziaur Rahman Khan Md., and Bahar Chowdhury Md.Iqbal. "Base Transit Time Modeling of Gaussian-Doped SiGe HBT Considering Field-Dependence of Mobility." International Journal of Research in Electronics and Computer Engineering (IJRECE) 4, no. 1 (2016): 53–59. https://doi.org/10.5281/zenodo.14702660.
Full textLin, Ming-Gu, Chao-Ping Huang, C. T. Liang, C. G. Smith, M. Y. Simmons, and D. A. Ritchie. "Mobility dependence on carrier density in a dilute GaAs electron gas in an in-plane magnetic field." Physica E: Low-dimensional Systems and Nanostructures 22, no. 1-3 (2004): 324–27. http://dx.doi.org/10.1016/j.physe.2003.12.012.
Full textБутко, А. В., В. Ю. Бутко та Ю. А. Кумзеров. "Зависимость подвижности носителей заряда в гибридных наноструктурах на интерфейсе графена с молекулярными ионами от их зарядовой плотности". Физика твердого тела 63, № 11 (2021): 1960. http://dx.doi.org/10.21883/ftt.2021.11.51603.141.
Full textSakaki, H., J. I. Motohisa, and K. Hirakawa. "Roles of low field mobility and its carrier-concentration dependences in high electron mobility transistors and other field effect transistors." IEEE Electron Device Letters 9, no. 3 (1988): 133–35. http://dx.doi.org/10.1109/55.2066.
Full textTruong, Van Tuan, Quoc Khanh Nguyen, Van Tai Vo, and Khan Linh Dang. "Transport Properties of a GaAs/InGaAs/GaAs Quantum Well: Temperature, Magnetic Field and Many-body Effects." Communications in Physics 30, no. 2 (2020): 123. http://dx.doi.org/10.15625/0868-3166/30/2/14446.
Full textBhargava, Kshitij, Anubha Bilgaiyan, S. Raj Mohan, et al. "Investigating the Influence of Alkyl Chain Length in Poly(3-alkylthiophene)s Over the Thin Film Morphology by Optical and Electrical Characterization." Journal of Nanoscience and Nanotechnology 16, no. 4 (2016): 3241–47. http://dx.doi.org/10.1166/jnn.2016.12322.
Full textIzhnin, I. I., K. D. Mynbaev, A. V. Voitsekhovskii, and A. G. Korotaev. "Discrete mobility-spectrum analysis and its application to transport studies in HgCdTe." Journal of Applied Physics 132, no. 15 (2022): 155702. http://dx.doi.org/10.1063/5.0097418.
Full textMendil, Nesrine, Mebarka Daoudi, Zakarya Berkai, and Abderrahmane Belghachi. "Charge Carrier Mobility Behavior in the SubPc/C60 Planar Heterojunction." Zeitschrift für Naturforschung A 73, no. 11 (2018): 1047–52. http://dx.doi.org/10.1515/zna-2018-0142.
Full textMuravyov, V. V., and V. N. Mishchenka. "Simulation of electron transfer processes in a semiconductor structure using graphene and boron nitride." Doklady BGUIR 18, no. 7 (2020): 71–78. http://dx.doi.org/10.35596/1729-7648-2020-18-7-71-78.
Full textGiannazzo, Filippo, Corrado Bongiorno, Salvatore di Franco, Emanuele Rimini, and Vito Raineri. "Micro- and Nano-Scale Electrical Characterization of Epitaxial Graphene on Off-Axis 4H-SiC (0001)." Materials Science Forum 717-720 (May 2012): 637–40. http://dx.doi.org/10.4028/www.scientific.net/msf.717-720.637.
Full textMano, Kitipong, Narin Tammarugwattana, Navaphun Kayunkid, Chaloempol Saributr, Pitiporn Thanomngam, and Jiti Nukeaw. "Study of Optical and Electrical Properties of Bismuth-Doped Copper Phthalocyanine Thin Films Grown by Thermal Co-Evaporation." Advanced Materials Research 1131 (December 2015): 49–52. http://dx.doi.org/10.4028/www.scientific.net/amr.1131.49.
Full textLiu, Xinyu, Logan Riney, Josue Guerra, et al. "Colossal negative magnetoresistance from hopping in insulating ferromagnetic semiconductors." Journal of Semiconductors 43, no. 11 (2022): 112502. http://dx.doi.org/10.1088/1674-4926/43/11/112502.
Full text