Academic literature on the topic 'Field enhancement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Field enhancement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Field enhancement"
FIDDY, M. A., R. P. INGEL, and J. O. SCHENK. "ANISOTROPIC METAMATERIALS FOR FIELD ENHANCEMENT AND NEGATIVE INDEX APPLICATIONS." Journal of Nonlinear Optical Physics & Materials 17, no. 04 (December 2008): 357–66. http://dx.doi.org/10.1142/s0218863508004275.
Full textKucheriava, I. M. "ELECTRIC FIELD ENHANCEMENT IN POLYETHYLENE CABLE INSULATION WITH DEFECTS." Tekhnichna Elektrodynamika 2018, no. 2 (February 23, 2018): 11–16. http://dx.doi.org/10.15407/techned2018.02.011.
Full textPiltan, Shiva, and Dan Sievenpiper. "Field enhancement in plasmonic nanostructures." Journal of Optics 20, no. 5 (April 16, 2018): 055401. http://dx.doi.org/10.1088/2040-8986/aab87e.
Full textRyu, Chang-Mo, and M. Y. Yu. "Magnetic Field Enhancement by Cross-field Diffusive Flow." Physica Scripta 57, no. 5 (May 1, 1998): 601–2. http://dx.doi.org/10.1088/0031-8949/57/5/009.
Full textSun, T. R., C. Wang, N. L. Borodkova, and G. N. Zastenker. "Geosynchronous magnetic field responses to fast solar wind dynamic pressure enhancements: MHD field model." Annales Geophysicae 30, no. 8 (August 27, 2012): 1285–95. http://dx.doi.org/10.5194/angeo-30-1285-2012.
Full textXiaogang Hong, 洪小刚, 徐文东 Wendong Xu, 李小刚 Xiaogang Li, 赵成强 Chengqiang Zhao, and 唐晓东 Xiaodong Tang. "Field enhancement effect of metal probe in evanescent field." Chinese Optics Letters 7, no. 1 (2009): 74–77. http://dx.doi.org/10.3788/col20090701.0074.
Full textBohn, John L., D. J. Nesbitt, and A. Gallagher. "Field enhancement in apertureless near-field scanning optical microscopy." Journal of the Optical Society of America A 18, no. 12 (December 1, 2001): 2998. http://dx.doi.org/10.1364/josaa.18.002998.
Full textLIN Zhi-xian, 林志贤, 徐胜 XU Sheng, 姚剑敏 YAO Jian-min, and 郭太良 GUO Tai-liang. "Field Emission Display Image Enhancement Technology." Chinese Journal of Liquid Crystals and Displays 27, no. 4 (2012): 476–80. http://dx.doi.org/10.3788/yjyxs20122704.0476.
Full textPellegrini, G., G. Mattei, V. Bello, and P. Mazzoldi. "Local-field enhancement in metallic nanoplanets." Materials Science and Engineering: B 149, no. 3 (April 2008): 247–50. http://dx.doi.org/10.1016/j.mseb.2007.09.060.
Full textSchnepf, Max J., Martin Mayer, Christian Kuttner, Moritz Tebbe, Daniel Wolf, Martin Dulle, Thomas Altantzis, et al. "Nanorattles with tailored electric field enhancement." Nanoscale 9, no. 27 (2017): 9376–85. http://dx.doi.org/10.1039/c7nr02952g.
Full textDissertations / Theses on the topic "Field enhancement"
Osley, E. J. "Tunable field enhancement in plasmonic nanostructures." Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1400567/.
Full textSéguin, Guy. "Enhancement of efficiency and accuracy of near-field measurements." Thesis, McGill University, 1997. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=35612.
Full textThe mathematical formulation leading to the near-field to far-field transform is presented in a novel and simpler form to use. Relations are established between the selected area and sampling rate of Near-Field measurement and the accuracy of the Far-Field of an Antenna. The spectral domain of the field is analysed in each case and parametric curves are derived. Correction of the spectral domain can significantly improve the accuracy of the Far-Field while using the same amount of Near-Field data.
A new concept, described as the Signature Function, is presented, analysed and tested. This new concept offers the possibility of conducting a highly reduced set of measurements while producing accurate results for antennas whose "Signature Function" is previously determined or can be estimated.
The simulated Near-Field of a radiating array is analysed in depth. A formulation and a procedure to correct the spectral domain of the field are established.
The technique developed is applied to experimental and simulated Near-Field data of large radiating Antennas leading to new information about the accuracy and speed of measurement achievable.
Grönqvist, Helena. "Vision Enhancement Systems : The Importance of Field of View." Thesis, Linköping University, Department of Computer and Information Science, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1370.
Full textThe purpose of the project, which led to this thesis, was to investigate the possible effects different horizontal Fields of View (FoV) have on driving performance when driving at night with a Vision Enhancement System (VES). The FoV chosen to be examined were 12 degree and 24 degree FoV, both displayed on a screen with the horizontal size of 12 degree FoV. This meant that the different conditions of FoV also had different display ratios 1:1 and 1:2. No effort was made to separate these parameters.
A simulator study was performed at the simulator at IKP, Linköping University. Sixteen participants in a within-group design participated in the study. The participants drove two road sections; one with a 12 degree FoV and the other with a 24 degree FoV. During each section four scenarios were presented in which the participants passed one of three types of objects; a moose, a deer or a man. In each section, two of the objects stood right next to the road and two were standing seventeen meters to the right of the road. As the drivers approached the objects standing seventeen meters to the right of the road, the objects moved out of the VES when the vehicle was 200 meters in front of the object with a 12 degree FoV. The objects could be seen with the naked eye when the vehicle was 100 meters in front of the object. When the drivers approached the objects with a 24degree FoV the objects moved out of the VES display when it was possible to see them unaided.
Results show that a 24 degree FoV displayed with a 1:2 ratio gives the drivers improved anticipatory control, compared to a 12 degree FoV displayed with a 1:1 ratio. The participants with a broader FoV were able to make informed decisions whereas with a narrow FoV some participants started to reaccelerate when they could not see an object. Results also show that any difference in recognition distance that may exist between a 12 degree and a 24 degree camera angle displayed in a 12 degree FoV display do not seem to have any adverse effect on the quality of driving.
Seguin, Guy. "Enhancement of efficiency and accuracy of near-field measurements." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0018/NQ44576.pdf.
Full textDücker, Eibe Behrend. "Enhancement Strategies in NMR Spectroscopy." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2018. http://hdl.handle.net/11858/00-1735-0000-002E-E3E4-9.
Full textFischer, Janina [Verfasser]. "Near-field mediated enhancement effects on plasmonic nanostructures / Janina Fischer." Mainz : Universitätsbibliothek Mainz, 2012. http://d-nb.info/1019193654/34.
Full textHuang, Danian. "Enhancement of automatic interpretation techniques for recognising potential field sources." Thesis, University of Leeds, 1996. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.719809.
Full textHearn, Christian Windsor. "Electrically-Small Antenna Performance Enhancement for Near-Field Detuning Environments." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/49554.
Full textSignificant advances in both the power and miniaturization of microelectronics have created a second possible approach to enhance bandwidth. Frequency agility, via switch tuning of reconfigurable structures, offers the possibility of the direct integration of high-speed electronics to the antenna structure. The potential result would provide a means to translate a narrow instantaneous bandwidth across a wider operating bandwidth.
One objective of the research was to create a direct comparison of the passive- multi-resonant and active-reconfigurable approaches to enhance bandwidth. Typically, volume-efficient, wideband antennas are unattractive candidates for low-profile applications and conversely, active electronics integrated directly antenna elements continue to introduce problematic loss mechanisms at the proof-of-concept level.
The dissertation presents an analysis method for wide bandwidth self-resonant antennas that exist in the 0.5dkad1.0 range. The combined approach utilizes the quality factor extracted directly from impedance response data in addition to near-and-far field modal analyses. Examples from several classes of antennas investigated are presented with practical boundary conditions. The resultant radiation properties of these antenna-finite ground plane systems are characterized by an appreciable percentage of radiated power outside the lowest-order mode.
Volume-efficient structures and non-omnidirectional radiation characteristics are generally not viable for portable devices. Several examples of passive structures, representing different antenna classes are investigated. A PIN diode, switch-tuned low-profile antenna prototype was also developed for the comparison which demonstrated excessive loss in the physical prototype.
Lastly, a passive, low-profile multi-resonant antenna element with monopole radiation is introduced. The structure is an extension of the planar inverted-F antenna with the addition of a capacitance-coupled parasitic to enhance reliable operation in unknown environments.
Ph. D.
Bur, Christian. "Selectivity Enhancement of Gas Sensitive Field Effect Transistors by Dynamic Operation." Doctoral thesis, Linköpings universitet, Tillämpad sensorvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-114670.
Full textGaskänsliga fält-effekt-transistorer baserade på halvledarmaterialet kiselkarbid (SiC-FET) har redan framgångsrikt använts för olika tillämpningar främst inom området för avgas- och förbränningsövervakning. Normalt har dessa sensorer använts vid konstant temperatur och anpassning till specifika tillämpningar har gjorts av material och sensor optimering. I denna avhandling har metoden för dynamisk modulering systematiskt utvecklats för att ökaselektiviteten av SiC-FETs. Temperatur-cykling är en välkänd metod för metalloxidsensorer och har nu tillämpats på SiC-FETs för första gången. Likaså har den pålagda gatepotentialen varierats. Mönsterigenkänningsmetoder baserade på multivariat statistik används för att utvärdera multi-dimensionella sensordata. Olika strategier för urval, korsvalidering och klassificering av okända uppgifter studeras. Efter att metodiken för dynamiska mätmetoder har beskrivits i detalj, verifieras strategin av virtuella-multisensorer genom två tester under laboratorieförhållanden. Detta visas av exemplet med separering av typiska avgaser och bestämning av koncentrationen av kväveoxider i varierande gasblandningar. Vidare har ett test genomförts där flyktiga organiska föreningar identifieras och kvantifieras för att bestämma kvaliteten på inomhusluft. Dessutom kan man öka selektiviteten av sensorerna genom att kombinera modulering av temperatur och gate-potential.
Gassensitive Feldeffekt-Transistoren basierend auf Siliziumkarbid (SiC-FET) werden überwiegend für die Abgasmessung eingesetzt. Üblicherweise werden diese Sensoren bei konstanter Temperatur betrieben. Durch die Auswahl geeigneter Materialien sowie durch die Modifikation der Sensoren können diese für verschiedene Anwendungen optimiert werden. In der vorliegenden Dissertation wird die Methodik einer dynamischen Betriebsweise zur Selektivitätssteigerung systematisch weiterentwickelt. Temperaturmodulation ist ein bewährtes Verfahren für Halbleitergassensoren, das hier auf SiC-FETs übertragen wird. In ähnlicher Weise wird auch das Gate-Potential zyklisch variiert. Mustererkennungsverfahren basierend auf multivariater Statistik werden eingesetzt, um die mehrdimensionalen Messdaten auszuwerten. Verschiedene Verfahren zur Merkmalsauswahl, Kreuzvalidierung und Klassifikation unbekannter Daten werden untersucht. Nachdem die Methodik ausführlich dargelegt wurde, wird der Ansatz des virtuellen Multisensors anhand zweier Anwendungen unter Laborbedingungen verifiziert. Dies wird am Beispiel der Konzentrationsbestimmung von Stickoxiden in variierenden Gasgemischen gezeigt. Zudem werden flüchtige organische Verbindungen im niedrigen ppb-Bereich zur Bestimmung der Innenraumluftqualität erkannt und quantifiziert. Die Selektivität kann durch die Kombination von Temperatur- und Potentialmodulation weiter gesteigert und Drifteinflüsse durch erweitertes Training kompensiert werden.
Bocan, Jiri. "Sensitivity enhancement and field-dependent relaxation in singlet nuclear magnetic resonance." Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/354550/.
Full textBooks on the topic "Field enhancement"
Vuillamy, Jean-Michel. Performance enhancement in field-programmable Gate Arrays. Ottawa: National Library of Canada, 1991.
Find full textDavid, Atkinson. Enhancement of air filtration using non-ionising electrostatic field. Ottawa: National Library of Canada, 1998.
Find full textRainer, Gulbins, ed. Photographic multishot techniques: Super-resolution, extended depth of field, stitching, high dynamic range imaging, and other image enhancement techniques. Santa Barbara, CA: Rocky Nook, 2009.
Find full textKemp, Mark Robert. The enhancement of mass transfer in foods by alternating electric fields. Birmingham: University of Birmingham, 2000.
Find full textBooth, John N. The experimental enhancement of putative Psi experiences by application of magnetic fields. Sudbury, Ont: Laurentian University, Department of Psychology, 2002.
Find full textMonteleone, Erminio, and Mario Bertuccioli, eds. Secondo Convegno Nazionale della Società Italiana di Scienze Sensoriali. Florence: Firenze University Press, 2009. http://dx.doi.org/10.36253/978-88-8453-872-7.
Full textSaha, Sujoy Kumar, Hrishiraj Ranjan, Madhu Sruthi Emani, and Anand Kumar Bharti. Electric Fields, Additives and Simultaneous Heat and Mass Transfer in Heat Transfer Enhancement. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-20773-1.
Full textK, Park Stephen, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Digital enhancement of flow field images. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1988.
Find full text1966-, Kawata Satoshi, and Shalaev Vladimir M. 1957-, eds. Tip enhancement. Amsterdam: Elsevier, 2007.
Find full text(Editor), Satoshi Kawata, and Vladimir M. Shalaev (Editor), eds. Tip Enhancement (Advances in Nano-Optics and Nano-Photonics). Elsevier Science, 2007.
Find full textBook chapters on the topic "Field enhancement"
Wieclaw, Lukasz. "Fingerprint Orientation Field Enhancement." In Computer Recognition Systems 4, 33–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20320-6_4.
Full textWinance, Myriam, Anne Marcellini, and Éric de Léséleuc. "From Repair to Enhancement: The Use of Technical Aids in the Field of Disability." In Inquiring into Human Enhancement, 119–37. London: Palgrave Macmillan UK, 2015. http://dx.doi.org/10.1057/9781137530073_7.
Full textTassin, Philippe, Thomas Koschny, and Costas M. Soukoulis. "Field Enhancement with Classical Electromagnetically Induced Transparency." In Nonlinear, Tunable and Active Metamaterials, 303–19. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08386-5_15.
Full textKasperek, Jerzy. "Real Time Morphological Image Contrast Enhancement in Virtex FPGA." In Field-Programmable Logic and Applications, 430–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44687-7_44.
Full textCollings, E. W., A. J. Markworth, J. K. McCoy, K. R. Marken, M. D. Sumption, E. Gregory, and T. S. Kreilick. "Critical Field Enhancement Due to Field Penetration in Fine-Filament Superconductors." In Advances in Cryogenic Engineering Materials, 255–61. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-9880-6_33.
Full textBenson, Heather A. E., Matthew McIldowie, and Tarl Prow. "Magnetophoresis: Skin Penetration Enhancement by a Magnetic Field." In Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement, 195–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53273-7_12.
Full textMurphy, Alan. "“Have You Believed Because You Have Seen?”: Human and Transhuman Desires for Alterations to the Visual Field and Religious Experience." In Religion and Human Enhancement, 157–72. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62488-4_10.
Full textPedersen, A., G. C. Crichton, and I. W. McAllister. "PD Related Field Enhancement in the Bulk Medium." In Gaseous Dielectrics VII, 223–29. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1295-4_40.
Full textCui, Wei, Chen Li, Can Zhang, and Xu Zhang. "Restoration and Enhancement of Underwater Light Field Image." In Lecture Notes in Electrical Engineering, 93–105. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5768-7_9.
Full textThawany, Priyanka, Shikha Jasrotia, Apoorva, Umesh Tiwari, and R. K. Sinha. "Study of Plasmonic Meta-Surface for Field Enhancement." In Springer Proceedings in Physics, 479–82. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9259-1_109.
Full textConference papers on the topic "Field enhancement"
Fahim, Abdullah, Prasanga Samarasinghe, and Thushara D. Abhayapala. "Extraction of exterior field from a mixed sound field for 2D height-invariant sound propagation." In 2016 IEEE International Workshop on Acoustic Signal Enhancement (IWAENC). IEEE, 2016. http://dx.doi.org/10.1109/iwaenc.2016.7602967.
Full textTang, Yunxin, Chris J. Hooker, Bryn Parry, Oleg Chekhlov, Steve Hawkes, Klaus Ertel, Rajeev Pattathil, and John L. Collier. "Contrast Enhancement for Astra-Gemini Laser." In High Intensity Lasers and High Field Phenomena. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/hilas.2012.ht1c.2.
Full textKumaran, Prashanth Nair, Law Chew Chen, M. Taufiq Yaakob, Ramli Ibrahim, Yopy Sosiawan, Juan Carlos Moreno, Jorge Maldonado, Sachin Kumar Sharma, Nor Nabilah Abdul Rahman, and Gulnara Iskenova. "Aligning Field Development Options to Stringent Economic Conditions in an Offshore Brownfield." In SPE Symposium: Production Enhancement and Cost Optimisation. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/189261-ms.
Full textZhang, Wen, and Thushara D. Abhayapala. "2.5D sound field reproduction in higher order Ambisonics." In 2014 14th International Workshop on Acoustic Signal Enhancement (IWAENC). IEEE, 2014. http://dx.doi.org/10.1109/iwaenc.2014.6954315.
Full textLi, Yang, Philip Camayd-Muñoz, Daryl I. Vulis, Peter Saeta, Yu Peng, Orad Reshef, Olivia Mello, Haoning Tang, Marko Lončar, and Eric Mazur. "Transition metamaterials for local-field enhancement." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_qels.2017.fm3g.6.
Full textKendrick, M. J., M. Blanding, D. H. McIntyre, and O. Ostroverkhova. "Optical field enhancement In tweezer trapping." In 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431451.
Full textKendrick, M. J., M. Blanding, D. H. McIntyre, and O. Ostroverkhova. "Optical Field Enhancement In Tweezer Trapping." In CLEO '07. 2007 Conference on Lasers and Electro-Optics. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4453674.
Full textMiller, Ryan, Yue Yin Lau, and John Booske. "Field enhancement on knife-edge cathodes." In 2008 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2008. http://dx.doi.org/10.1109/ivelec.2008.4556528.
Full textLiang, Yuanda, Yangyang Tian, Peng Zhong, Ling Guo, Wei Huang, and Shan Yin. "Focused field enhancement of terahertz metalens." In 4th Optics Young Scientist Summit (OYSS 2020), edited by Chaoyang Lu, Yangjian Cai, Feng Chen, and Zhaohui Li. SPIE, 2021. http://dx.doi.org/10.1117/12.2590722.
Full textWatchawong, Dangchin, Abdul Nasir Mohamad Sobri, and Mohd Hisham Bin Abd Hamid. "Cost Saving Through Wax and Scale Management Strategy in Offshore Marginal Field, Malaysia." In SPE Symposium: Production Enhancement and Cost Optimisation. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/189215-ms.
Full textReports on the topic "Field enhancement"
Maruyama, Xavier K., Joseph Osborne, and Vasco C. Martins. Observation of Field Enhancement on the HMS LANCASTER. Fort Belvoir, VA: Defense Technical Information Center, November 1993. http://dx.doi.org/10.21236/ada275660.
Full textSchumacher, Courtney. Observations and Modeling of the Green Ocean Amazon: Sounding Enhancement Field Campaign Report. Office of Scientific and Technical Information (OSTI), May 2016. http://dx.doi.org/10.2172/1254313.
Full textJoseph N. Moore. Geochemical Enhancement Of Enhanced Geothermal System Reservoirs: An Integrated Field And Geochemical Approach. Office of Scientific and Technical Information (OSTI), December 2007. http://dx.doi.org/10.2172/925498.
Full textScott Reeves and Buckley Walsh. SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT, MOCANE-LAVERNE FIELD, OKLAHOMA. Office of Scientific and Technical Information (OSTI), August 2003. http://dx.doi.org/10.2172/834345.
Full textTedrow, P. M., and R. Meservey. Improvement in high magnetic field behavior of vandium gallium superconductors by enhancement of spin-orbit scattering. Office of Scientific and Technical Information (OSTI), November 1988. http://dx.doi.org/10.2172/5059318.
Full textMoghtadernejad, Sara, Ehsan Barjasteh, Ren Nagata, and Haia Malabeh. Enhancement of Asphalt Performance by Graphene-Based Bitumen Nanocomposites. Mineta Transportation Institute, June 2021. http://dx.doi.org/10.31979/mti.2021.1918.
Full textPalmer, D. T., R. H. Miller, X. J. Wang, and I. Ben-Zvi. Beam dynamics enhancement due to accelerating field symmetrization in the BNL/SLAC/UCLA 1.6 cell S-band photocathode RF gun. Office of Scientific and Technical Information (OSTI), July 1997. http://dx.doi.org/10.2172/495805.
Full textThomann, William F., S. B. Kong, and Sara F. Kerr. Enhancement of Laboratory and Field Instruction in Environmental Science, Biology, and Chemistry Degree Programs at University of the Incarnate Word. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada387830.
Full textEl-Sayed, Mostafa A. Time Resolved Optical Studies on The Plasmonic Field Enhancement of Bacteriorhodopsin Proton Photo-current: Final Technical Report Covering Aug 31, 2015–Aug 31, 2016. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1324669.
Full textHorner, Steve, and Iraj Ershaghi. An Advanced Fracture Characterization and Well Path Navigation System for Effective Re-Development and Enhancement of Ultimate Recovery from the Complex Monterey Reservoir of South Ellwood Field, Offshore California. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/1109079.
Full text