Academic literature on the topic 'Films layer-by-layer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Films layer-by-layer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Films layer-by-layer"
Lin, Y. H., C. Jiang, J. Xu, Z. Lin, and V. V. Tsukruk. "Sculptured Layer-by-Layer Films." Advanced Materials 19, no. 22 (November 19, 2007): 3827–32. http://dx.doi.org/10.1002/adma.200700942.
Full textDecher, Gero, Michel Eckle, Johannes Schmitt, and Bernd Struth. "Layer-by-layer assembled multicomposite films." Current Opinion in Colloid & Interface Science 3, no. 1 (February 1998): 32–39. http://dx.doi.org/10.1016/s1359-0294(98)80039-3.
Full textRaposo, Maria, and Osvaldo N. Oliveira Jr. "Adsorption mechanisms in layer-by-layer films." Brazilian Journal of Physics 28, no. 4 (December 1998): 00. http://dx.doi.org/10.1590/s0103-97331998000400014.
Full textZhuk, Aliaksandr, Robert Mirza, and Svetlana Sukhishvili. "Multiresponsive Clay-Containing Layer-by-Layer Films." ACS Nano 5, no. 11 (October 7, 2011): 8790–99. http://dx.doi.org/10.1021/nn202812a.
Full textChen, Dongdong, Mingda Wu, Bochao Li, Kefeng Ren, Zhongkai Cheng, Jian Ji, Yang Li, and Junqi Sun. "Layer-by-Layer-Assembled Healable Antifouling Films." Advanced Materials 27, no. 39 (August 25, 2015): 5882–88. http://dx.doi.org/10.1002/adma.201501726.
Full textKharlampieva, Eugenia, and Svetlana A. Sukhishvili. "Hydrogen‐Bonded Layer‐by‐Layer Polymer Films." Journal of Macromolecular Science, Part C: Polymer Reviews 46, no. 4 (December 2006): 377–95. http://dx.doi.org/10.1080/15583720600945386.
Full textHidalgo-Acosta, Jonnathan C., Micheál D. Scanlon, Manuel A. Méndez, Véronique Amstutz, Heron Vrubel, Marcin Opallo, and Hubert H. Girault. "Boosting water oxidation layer-by-layer." Physical Chemistry Chemical Physics 18, no. 13 (2016): 9295–304. http://dx.doi.org/10.1039/c5cp06890h.
Full textWang, Benjamin N., David Olmeijer, Rajul Shah, and Kevin C. Krogman. "Highly durable spray layer-by-layer assembled films." Surface Innovations 1, no. 2 (June 2013): 92–97. http://dx.doi.org/10.1680/si.12.00010.
Full textdos Santos, Kevin F., Romário J. da Silva, Karla B. Romio, Paula C. S. Souto, Josmary R. Silva, and Nara C. de Souza. "Spray layer-by-layer films for photodynamic inactivation." Photodiagnosis and Photodynamic Therapy 15 (September 2016): 197–201. http://dx.doi.org/10.1016/j.pdpdt.2016.06.006.
Full textZhang, Jianfu, Dongdong Chen, Yang Li, and Junqi Sun. "Layer-by-layer assembled highly adhesive microgel films." Polymer 54, no. 16 (July 2013): 4220–26. http://dx.doi.org/10.1016/j.polymer.2013.06.002.
Full textDissertations / Theses on the topic "Films layer-by-layer"
Schmidt, Daniel J. Ph D. Massachusetts Institute of Technology. "Engineering electroresponsive layer-by-layer thin films." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/62735.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
Electroresponsive layer-by-layer (LbL) polymer films and polymer nanocomposite films were investigated as model systems for electrically triggered drug delivery applications and "mechanomutable" surface coating applications. Two strategies were implemented in the design of these electroresponsive films: the use of redox-active, chargeshifting nanoparticles and the control over local pH utilizing the electrochemical reduction of dissolved oxygen. These strategies and the multiple materials systems explored are described below. Redox-active Prussian Blue (PB) nanoparticles exhibit multiple, stable oxidation states and can shift their charge in response to mild electric potentials. The inherently negatively charged particles may be self-assembled into LbL films along with positively charged polyelectrolytes. When the PB in an LbL film is oxidized to its neutral state, dissolution of the film occurs as cohesive ionic crosslinks are broken and excess charge in the film brings in ions and water for electroneutrality, which solubilize the film components. The release of the polyanion dextran sulfate and the small molecule antibiotic gentamicin sulfate were precisely controlled with an electric potential. When PB is reduced, the negative charge on the particle is doubled, which results in film swelling and a decrease in stiffness. In films comprising PB and linear polyethyleneimine, reversible thickness changes on the order of 5-10% and reversible elastic modulus changes on the order of 50% (between 3.40 GPa and 1.75 GPa) were observed. Employing the second strategy mentioned above, the local pH near an electrode surface may be increased to more basic values when dissolved oxygen is electrochemically reduced to hydroxide ions. In the first model system explored, hydrogen bonded (H-bonded) films comprising polyvinylpyrrolidone (PVPON) and tannic acid (TA), were dissolved at constant bulk pH by applying mild potentials (-0.25 V to -1.00 V vs. Ag/AgCl). The dissolution mechanism and kinetics could be tuned with the magnitude of the applied voltage and the concentration of dissolved oxygen. In the second model system explored, films comprising polyallylamine hydrochloride (PAH) and sulfonated polystyrene (SPS) were found to undergo reversible and dramatic swelling/deswelling transitions on the order of roughly 300 vol% and mechanical transitions on the order of 600-800% (shear modulus between 230 kPa and 1.9 MPa and loss modulus between 90 kPa and 620 kPa). This thesis contributes to the applied materials science branch of chemical engineering. New polymer and polymer nanocomposite thin films were developed that can be further engineered and incorporated into implantable drug delivery devices for electrically triggered drug delivery or incorporated into MEMS and microfluidic systems for flow control or biomedical applications. Furthermore, the model systems presented here open doors for fundamental work on the transport of electrons, ions, and water through these electroresponsive films and the implications of transport phenomena on the control over film dissolution and swelling responses.
by Daniel J. Schmidt.
Ph.D.
Jan, Chien Sy Jason. "Layer-by-layer assembly of electrically conductive polymer thin films." Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/5979.
Full textHigy, Christophe. "Polyelectrolyte conformation in layer-by-layer assembled nanoscale films." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAE007/document.
Full textThe Layer-by-Layer assembly allows the build-up of multimaterial films with various properties showing a stratified structure. This work describes the structural strudies of multilayer films of polyelectrolytes with neutron scattering measurements.Ageing effect on films was determined by neutron reflectometry. We observed a slight shrink of the films after 5 years and a strong expansion after 15 years.We also showed that the proximity of the substrate and the air at the surface have an influence on the structure of the layers at the extremities of the films, leading to an inhomogeneous structure perpendicularly to the surface.Finally, we studied the conformation of polyelectrolyte chains in the multilayer films ; we determined that PSS chains in dipped films have a flattened coil conformation, whereas the polyelectrolyte chains in solution have a spherical conformation
Chance, Brandon Scott. "Layer-by-layer assembly on polyethylene films via "click" chemistry." Thesis, [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1252.
Full textDronov, Roman. "Multi-component protein films by layer-by-layer : assembly and electron transfer." Phd thesis, Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2008/1728/.
Full textElektronentransferphänomene in Proteinen stellen den häufigsten Typ biochemischer Reaktionen dar. Sie spielen eine zentrale Rolle bei der Energieumwandlung in der Zelle und sind entscheidende Komponenten in der Atmung und Photosynthese. Diese komplexen Kaskaden biochemischer Reaktionen setzen sich aus einer Reihe von Proteinen und Proteinkomplexen zusammen, die den Energietransfer an verschiedene Formen chemischer Energie koppeln. Die große Effektivität und Selektivität des Signaltransfers in diesen natürlichen Redoxketten war Vorbild für die Entwicklung künstlicher Architekturen, die die wesentlichen Eigenschaften ihrer natürlichen Analoga nachahmen. Die Implementierung des direkten Elektronentransfers (DET) von Proteinen mit Elektroden war ein Durchbruch im Bereich der Bioelektronik. Sie lieferte einen einfachen und effizienten Weg für das Koppeln biologischer Erkennungsereignisse an einen Signalumwandler. Durch den DET können Redoxmediatoren vermieden und damit potentielle Grenzflächen und Nebenreaktionen reduziert werden. Ebenso wird damit die Kompatibilität für in vivo Bedingungen erhöht. Jedoch zeigen nur einige Hämproteine wie das Redoxprotein Cytochrom c (Cyt c) und blaue Kupferproteine einen effizienten DET auf verschiedenen Elektrodentypen. Bisherige Untersuchungen mit Cyt c konzentrierten sich hauptsächlich auf den heterogenen Elektronentransfer von Monoschichten dieses Proteins auf Gold. Ein wichtiger Fortschritt war die Herstellung von Cyt c Multischichten durch die elektrostatische Layer-by-Layer-Technik. Die einfache Herstellung, die Stabilität sowie die kontrollierbaren Permeationseigenschaften von Polyelektrolyt-Multischichten machte sie besonders attraktiv für elektroanalytische Anwendungen. So gelang es auch zum ersten Mal vollständig elektroaktive Multischichten aus Cyt c und Polyanilinsulfonsäure zu präparieren. Dieser Ansatz wurde hier erweitert, um eine analytische Signalkette auf der Basis von Multischichten aus Cyt c und Xanthinoxidase zu entwerfen. Das System bedarf keinen externen Mediator, es hängt jedoch von der in situ Generierung eines vermittelnden Radikals ab und erlaubt daher einen Signaltransfer von Hypoxanthin über ein substratumwandelndes Enzym und Cyt c zur Elektrode. Eine andere Art von Signalketten basiert auf der Assemblierung von Proteinen in Komplexen auf Elektroden in solcher Art und Weise, daß ein direkter Protein-Protein-Elektronentransfer möglich wird. Dieser Ansatz benötigt keinen Redoxmediator in Analogie zu Beispielen aus dem biologischen Signaltransfer. Zu diesem Zweck werden Cyt c und das Enzym Bilirubinoxidase mit einem selbst-assemblierenden Polyelektrolyten auf einer Goldelektrode koimmobilisiert. Obwohl diese zwei Proteine keine natürlichen Reaktionspartner sind, unterstützt die Protein-Architektur einen Elektronentransfer von der Elektrode über mehrere Proteinschichten zu molekularem Sauerstoff und ergibt einen signifikanten katalytischen Reduktionsstrom. Schließlich wird eine neue Strategie beschrieben für eine Selbstassemblierung von Proteinen ohne zusätzlichen Polyelektrolyten - am Beispiel der Kombination von Cyt c mit Sulfitoxidase. Es stellte sich heraus, daß die elektrostatische Wechselwirkung zwischen diesen zwei Proteinen mit ziemlich weit voneinander entfernt liegenden pI-Werten während des Assemblierungsprozesses durch einen Puffer mit geringer Ionenstärke ausreicht um die beiden Biomoleküle nach dem Layer-by-Layer-Prinzip auf einer Elektrode abzuscheiden. Es wird erwartet, daß das entwickelte Konzept von Multiprotein-Assemblaten auf Elektroden weitere Fortschritte bei dem Entwurf von Multischichten und sogar noch komplexeren biomimetischen Signalkaskaden anregen wird und dabei der Vorteil der direkten Kommunikation zwischen Proteinen genutzt wird.
Dziedzic, Tomasz. "Electrochemistry of layer-by-layer films containing redox active MnO₂ nanoparticles." Laramie, Wyo. : University of Wyoming, 2008. http://proquest.umi.com/pqdweb?did=1798480871&sid=2&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Full textYoo, Dongsik. "Functional multilayer organic thin films fabricated by layer-by-layer sequential adsorption technique." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/43366.
Full textMak, Wing Cheung. "The applications of layer-by-layer technology in bioengineering and bioanalytics /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?BIEN%202004%20MAK.
Full textCai, Li-Rong. "Organic-inorganic layer-by-layer self-assembled multilayer films : preparation, characterization and applications /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?CHEM%202004%20CAI.
Full textDeLongchamp, Dean M. (Dean Michael) 1975. "Engineering the electrochromism and ion conduction of layer-by-layer assembled films." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/29995.
Full textIncludes bibliographical references.
This work applies the processing technique of layer-by-layer (LBL) assembly to the creation and development of new electrochemically active materials. Elements of the thin-film electrochromic cell were chosen as a particular focus for LBL fabrication. Layer-by-layer assembly is the ideal processing tool to tailor the electrochemical systems within electrochromic cells because modulating processing conditions can greatly impact the nanoscale composition and morphology of the resultant films. For the first time, this control was used to: 1) intelligently design electrochromic LBL assembled composite films that facilitated ion motion for faster switching and exhibited enhanced or shifted coloration, 2) combine multiple electrochromic materials into novel LBL assembled composites with even higher contrast, faster switching, and multiple colored states, and finally 3) develop and optimize several LBL assembled polymer electrolyte films that display high ionic conductivity and sound mechanical integrity. Electrochromic cell elements were chosen not only for their undeveloped commercial potential, but also because they incorporate multifunctional material systems with alternative applications. Studies of LBL fabrication and the operation of electrochromic cells provide insight into intermolecular interactions, internal and external film interfaces, thin film electrochemistry, and charged species mobility in polymer solids. First investigated was the capability of LBL assembly to alter the properties of electrochromic films by varying molecular blending.
(cont.) The electrochromophores for this investigation were appropriated from all corners of the materials spectrum, including discrete electrochromic polymers, conjugated polymers, soft colloidal suspensions, and inorganic particle dispersions. In each system, the influence of assembly conditions and film composition was elucidated; in particular systems the hydrophobicity, acidity, and morphology of the films were found to impact the electrochemistry and optical character of the films, providing a means to modulate these properties by directing LBL assembly design choices. Because of the high uniformity and thickness control allowed by LBL assembly, the contrast and switching performance of all LBL assembled electrochromic films were in general superior to those of films containing the same electrochromophores fabricated by other methods. One particularly promising system involved novel LBL assembled films containing the same electrochromophores fabricated by other methods. One particularly promising system involved novel LBL assembled films containing electrochromic metal hexacyanoferrate nanocrystals of the Prussian blue family. These films displayed fast and deep coloration; synthetic nanocrystal variation extended absorbance over a broad spectral range so that these inorganic/polymer composite films could potentially be considered as elements in a full-color switchable CMYK display. The power of the LBL assembly technique was leveraged further with the successful fabrication of "dual electrochrome" electrodes ...
by Dean M. DeLongchamp.
Ph.D.
Books on the topic "Films layer-by-layer"
Picart, Catherine, Frank Caruso, and Jean-Claude Voegel, eds. Layer-by-Layer Films for Biomedical Applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527675869.
Full textCaruso, Frank, C. Picart, Jean-Claude Voegel, and Gero Decher. Layer-by-Layer Films for Biomedical Applications. Wiley-VCH Verlag GmbH, 2014.
Find full textCaruso, Frank, Jean-Claude Voegel, Gero Decher, and Catherine Picart. Layer-By-Layer Films for Biomedical Applications. Wiley & Sons, Incorporated, John, 2015.
Find full textEscorcia, Alioska Giselle. Electrochemical properties of ferrocenylalkane dithiol-gold nanoparticle films prepared by layer-by-layer self-assembly. 2006.
Find full textSaitoh, E., and K. Ando. Experimental observation of the spin Hall effect using spin dynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0015.
Full textRascaroli, Laura. Narration. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190238247.003.0007.
Full textHarford Vargas, Jennifer. Coda. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190642853.003.0007.
Full textBradley, Ben. Darwin's Psychology. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198708216.001.0001.
Full textBook chapters on the topic "Films layer-by-layer"
Ariga, Katsuhiko. "Layer-by-Layer (LbL) Assembly." In Organized Organic Ultrathin Films, 107–55. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527654666.ch4.
Full textMao, Zhengwei, Shan Yu, and Changyou Gao. "Bioactive and Spatially Organized LbL Films." In Layer-by-Layer Films for Biomedical Applications, 79–102. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527675869.ch5.
Full textSun, Junqi, Xiaokong Liu, and Jiacong Shen. "Layer-by-Layer Assembly of Polymeric Complexes." In Multilayer Thin Films, 135–50. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527646746.ch7.
Full textNiepel, Marcus S., Kristin Kirchhof, Matthias Menzel, Andreas Heilmann, and Thomas Groth. "Controlling Cell Adhesion Using pH-ModifiedPolyelectrolyte Multilayer Films." In Layer-by-Layer Films for Biomedical Applications, 1–30. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527675869.ch1.
Full textSzarpak-Jankowska, Anna, Jing Jing, and Rachel Auzély-Velty. "Layer-by-Layer Microcapsules Based on Functional Polysaccharides." In Layer-by-Layer Films for Biomedical Applications, 295–308. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527675869.ch14.
Full textTeo, Boon M., Martin E. Lynge, Leticia Hosta-Rigau, and Brigitte Städler. "Subcompartmentalized Surface-Adhering Polymer Thin Films Toward Drug Delivery Applications." In Layer-by-Layer Films for Biomedical Applications, 207–32. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527675869.ch10.
Full textDe Geest, Bruno G., and Stefaan De Koker. "Multilayer Capsules forInvivoBiomedical Applications." In Layer-by-Layer Films for Biomedical Applications, 233–56. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527675869.ch11.
Full textOchs, Markus, Wolfgang J. Parak, Joanna Rejman, and Susana Carregal-Romero. "Light-Addressable Microcapsules." In Layer-by-Layer Films for Biomedical Applications, 257–78. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527675869.ch12.
Full textDelcea, Mihaela, Helmuth Moehwald, and Andre G. Skirtach. "Nanoparticle Functionalized Surfaces." In Layer-by-Layer Films for Biomedical Applications, 279–94. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527675869.ch13.
Full textGause, Katelyn T., Yan Yan, and Frank Caruso. "Nanoengineered Polymer Capsules: Moving into the Biological Realm." In Layer-by-Layer Films for Biomedical Applications, 309–42. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527675869.ch15.
Full textConference papers on the topic "Films layer-by-layer"
Roberts, M. Joseph. "Nonlinear optical films formed layer-by-layer using alternating polyelectrolyte deposition." In Organic Thin Films. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/otf.1999.fc4.
Full textZideluns, Janis, Julien Lumeau, Fabien Lemarchand, Detlef Arhilger, and Harro Hagedorn. "Layer-by-layer adapted optical monitoring strategy of optical interference filters." In Advances in Optical Thin Films VII, edited by Michel Lequime and Detlev Ristau. SPIE, 2021. http://dx.doi.org/10.1117/12.2597088.
Full textWaenkaew, P., S. Phanichphant, and R. C. Advincula. "Layer-by-layer deposition of polyelectrolyte ultrathin films." In 2010 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS 2010). IEEE, 2010. http://dx.doi.org/10.1109/nems.2010.5592149.
Full textAraújo, Mónica, Jorge Morgado, and Quirina Ferreira. "Layer-by-layer Assembled Films for Ocular Drug Delivery." In Special Session on Biomedical Optical Imaging and Nanomedicine. SCITEPRESS - Science and Technology Publications, 2017. http://dx.doi.org/10.5220/0006320503950401.
Full textWESTERHOFF, F., L. BRENDEL, and D. E. WOLF. "LAYER-BY-LAYER PATTERN PROPAGATION AND PULSED LASER DEPOSITION." In From Atoms, Molecules and Clusters in Complex Environment to Thin Films and Multilayers. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793652_0013.
Full textGoh Boon Tong, Siti Meriam Ab Gani, Muhamad Rasat Muhamad, and Saadah Abdul Rahman. "Nanostructured silicon thin films prepared by layer-by-layer deposition technique." In 2008 2nd IEEE International Nanoelectronics Conference. IEEE, 2008. http://dx.doi.org/10.1109/inec.2008.4585637.
Full textFujita, Shiro, and Seimei Shiratori. "Waterproof Anti-reflection films fabricated by layer-by-layer adsorption process." In 2003 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2003. http://dx.doi.org/10.7567/ssdm.2003.c-8-4.
Full textAgarwal, Mangilal, Sudhir Shrestha, Parvin Ghane, and Kody Varahramyan. "Layer-by-Layer Nanoassembly of CIS Nanoparticles." In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34157.
Full textMASALOVA, O., T. SHUTAVA, V. AGABEKOV, and G. ZHAVNERKO. "SORPTION PROPERTIES OF PROTAMINE SULFATE/CARBOXYMETHYLCELLULOSE LAYER-BY-LAYER FILMS." In Proceedings of the International Conference on Nanomeeting 2007. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770950_0087.
Full textShariffudin, S. S., M. H. Mamat, S. H. Herman, and M. Rusop. "Characteristics of layer-by-layer ZnO nanoparticles thin films prepared with different deposition layer." In 2012 IEEE Symposium on Humanities, Science and Engineering Research (SHUSER). IEEE, 2012. http://dx.doi.org/10.1109/shuser.2012.6269005.
Full text