Academic literature on the topic 'Filopodium'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Filopodium.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Filopodium"
Krndija, Denis, and Michael Fairhead. "IGF1R undergoes active and directed centripetal transport on filopodia upon receptor activation." Biochemical Journal 476, no. 23 (December 3, 2019): 3583–93. http://dx.doi.org/10.1042/bcj20190665.
Full textMcConnell, Russell E., J. Edward van Veen, Marina Vidaki, Adam V. Kwiatkowski, Aaron S. Meyer, and Frank B. Gertler. "A requirement for filopodia extension toward Slit during Robo-mediated axon repulsion." Journal of Cell Biology 213, no. 2 (April 18, 2016): 261–74. http://dx.doi.org/10.1083/jcb.201509062.
Full textMarchenko, Olena O., Sulagna Das, Ji Yu, Igor L. Novak, Vladimir I. Rodionov, Nadia Efimova, Tatyana Svitkina, Charles W. Wolgemuth, and Leslie M. Loew. "A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites." Molecular Biology of the Cell 28, no. 8 (April 15, 2017): 1021–33. http://dx.doi.org/10.1091/mbc.e16-06-0461.
Full textLeijnse, Natascha, Lene B. Oddershede, and Poul M. Bendix. "Helical buckling of actin inside filopodia generates traction." Proceedings of the National Academy of Sciences 112, no. 1 (December 22, 2014): 136–41. http://dx.doi.org/10.1073/pnas.1411761112.
Full textKim, Min-Cheol, Yaron R. Silberberg, Rohan Abeyaratne, Roger D. Kamm, and H. Harry Asada. "Computational modeling of three-dimensional ECM-rigidity sensing to guide directed cell migration." Proceedings of the National Academy of Sciences 115, no. 3 (January 2, 2018): E390—E399. http://dx.doi.org/10.1073/pnas.1717230115.
Full textHeidemann, S. R., P. Lamoureux, and R. E. Buxbaum. "Growth cone behavior and production of traction force." Journal of Cell Biology 111, no. 5 (November 1, 1990): 1949–57. http://dx.doi.org/10.1083/jcb.111.5.1949.
Full textLau, Pak-ming, Robert S. Zucker, and David Bentley. "Induction of Filopodia by Direct Local Elevation of Intracellular Calcium Ion Concentration." Journal of Cell Biology 145, no. 6 (June 14, 1999): 1265–76. http://dx.doi.org/10.1083/jcb.145.6.1265.
Full textSaha, Tanumoy, Isabel Rathmann, Abhiyan Viplav, Sadhana Panzade, Isabell Begemann, Christiane Rasch, Jürgen Klingauf, Maja Matis, and Milos Galic. "Automated analysis of filopodial length and spatially resolved protein concentration via adaptive shape tracking." Molecular Biology of the Cell 27, no. 22 (November 7, 2016): 3616–26. http://dx.doi.org/10.1091/mbc.e16-06-0406.
Full textMiyashita, Motoaki, Hiroshi Ohnishi, Hideki Okazawa, Hiroyasu Tomonaga, Akiko Hayashi, Tetsuro-Takahiro Fujimoto, Nobuhiko Furuya, and Takashi Matozaki. "Promotion of Neurite and Filopodium Formation by CD47: Roles of Integrins, Rac, and Cdc42." Molecular Biology of the Cell 15, no. 8 (August 2004): 3950–63. http://dx.doi.org/10.1091/mbc.e04-01-0019.
Full textMallavarapu, Aneil, and Tim Mitchison. "Regulated Actin Cytoskeleton Assembly at Filopodium Tips Controls Their Extension and Retraction." Journal of Cell Biology 146, no. 5 (September 6, 1999): 1097–106. http://dx.doi.org/10.1083/jcb.146.5.1097.
Full textDissertations / Theses on the topic "Filopodium"
Lourenco, da Conceicao Luz Marta. "Cellular mechanisms involved in Wnt8 distribution and function in zebrafish neurectoderm patterning." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1228815553128-55176.
Full textLourenco, da Conceicao Luz Marta. "Cellular mechanisms involved in Wnt8 distribution and function in zebrafish neurectoderm patterning." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23716.
Full textDurkaya, Göksel. "Nanoscopic Investigation of Surface Morphology of Neural Growth Cones and Indium Containing Group-III Nitrides." Digital Archive @ GSU, 2009. http://digitalarchive.gsu.edu/phy_astr_diss/43.
Full textEzeanochie, Tochukwu Chinedu. "Modelling and Simulation of Filopodial Protrusion." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32781.
Full textMortara, R. A. "Microfilament-membrane interactions in isolated P815 filopodia." Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372923.
Full textArstikaitis, Pamela. "The role of filopodia in the formation of spine synapses." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/32688.
Full textGauthier-Campbell, Catherine. "Regulation of filopodia dynamics is critical for proper synapse formation." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/722.
Full textLee, Kwonmoo. "Self-assembly of filopodia-like structures on supported lipid bilayers." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/62648.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 98-121).
Filopodia are finger-like protrusive structures of cells, comprised of actin bundles, which can serve as sensory organelles. To probe their pathway of assembly we have reconstituted filopodia-like structures (FLSs) by applying frog egg extracts to supported lipid bilayers containing phosphatidylinositol(4,5)bisphosphate, PI(4,5)P 2. The FLSs recapitulate important characteristics of filopodia - they assemble parallel actin bundles from the lipid membrane and they form in the presence of capping activity. Known filopodial tip components such as Diaphanous-related formin and VASP localize to the membrane base of the structures, and bundling protein fascin to the shaft. Actin subunits assemble at the tip and translocate into the shaft. FLS assembly requires negativelycharged lipid membranes, with specific requirements for PI(4,5)P 2 and, for maximal efficiency, phosphatidyl-serine. The focal nature of FLSs is not a result of templating by PI(4,5)P2 microdomains but instead by the self-organization of tip complex assembly on uniform PI(4,5)P 2-enriched regions. BAR domain protein toca-1 recruits N-WASP then the Arp2/3 complex and actin assembly follow. Elongation proteins Diaphanous-related formin, VASP and fascin are recruited later. The Arp2/3 complex is absolutely required for FLS initiation but is not required for elongation, which may involve multiple factors including formins. We propose a model for filopodia formation involving an initial clustering of Arp 2/3 complex regulators, self-assembly of filopodial tip complexes on the membrane, resulting in the outgrowth of parallel actin bundles.
by Kwonmoo Lee.
Ph.D.
De, Arpan. "Role of RHO- Family Guanosine Triphosphatase Effectors in Filopodia Dynamics." Bowling Green State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1440176135.
Full textEvers, Jan Felix. "The role of dendritic filopodia in postembryonic remodelling of dendritic architecture." [S.l. : s.n.], 2005. http://www.diss.fu-berlin.de/2005/153/index.html.
Full textBook chapters on the topic "Filopodium"
Jacquemet, Guillaume, Hellyeh Hamidi, and Johanna Ivaska. "Filopodia Quantification Using FiloQuant." In Computer Optimized Microscopy, 359–73. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9686-5_16.
Full textSmall, J. Victor, and Klemens Rottner. "Elementary Cellular Processes Driven by Actin Assembly: Lamellipodia and Filopodia." In Actin-based Motility, 3–33. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9301-1_1.
Full textGallo, Gianluca. "The Neuronal Actin Cytoskeleton and the Protrusion of Lamellipodia and Filopodia." In Advances in Neurobiology, 7–22. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7368-9_2.
Full textHely, Tim A., Arjen van Ooyen, and David J. Willshaw. "A Simulation of Growth Cone Filopodia Dynamics Based on Turing Morphogenesis Patterns." In Information Processing in Cells and Tissues, 69–73. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5345-8_8.
Full textAarts, L. H. J., H. B. Nielander, A. B. Oestreicher, L. H. Schrama, W. H. Gispen, and P. Schotman. "Overexpression of B-50/GAP-43 Induces Formation of Filopodia in PC12 Cells." In Neurochemistry, 1107–10. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5405-9_186.
Full textPeterlík, Igor, David Svoboda, Vladimír Ulman, Dmitry V. Sorokin, and Martin Maška. "Model-Based Generation of Synthetic 3D Time-Lapse Sequences of Multiple Mutually Interacting Motile Cells with Filopodia." In Simulation and Synthesis in Medical Imaging, 71–79. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00536-8_8.
Full text"Filopodia." In Encyclopedia of Parasitology, 1013. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-43978-4_1197.
Full textRobles, E., S. J. Smith, and M. P. Meyer. "Synaptic Precursors: Filopodia." In Encyclopedia of Neuroscience, 779–86. Elsevier, 2009. http://dx.doi.org/10.1016/b978-008045046-9.00361-2.
Full textSvitkina, T. M. "Filopodia and Lamellipodia." In Encyclopedia of Cell Biology, 683–93. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-394447-4.20066-7.
Full textVignjevic, Danijela, John Peloquin, and Gary G. Borisy. "In Vitro Assembly of Filopodia‐Like Bundles." In Methods in Enzymology, 727–39. Elsevier, 2006. http://dx.doi.org/10.1016/s0076-6879(06)06057-5.
Full textConference papers on the topic "Filopodium"
Lee, Chau-Hwang. "Label-free observation of cancer-cell filopodium activities using structured illumination nanoprofilometry." In 2015 Opto-Electronics and Communications Conference (OECC). IEEE, 2015. http://dx.doi.org/10.1109/oecc.2015.7340191.
Full textMaska, Martin, Tereza Necasova, David Wiesner, Dmitry V. Sorokin, Igor Peterlik, Vladimir Ulman, and David Svoboda. "Toward Robust Fully 3D Filopodium Segmentation and Tracking in Time-Lapse Fluorescence Microscopy." In 2019 IEEE International Conference on Image Processing (ICIP). IEEE, 2019. http://dx.doi.org/10.1109/icip.2019.8803721.
Full textMaska, Martin, Xabier Morales, Arrate Munoz-Barrutia, Ana Rouzaut, and Carlos Ortiz-de-Solorzano. "Automatic quantification of filopodia-based cell migration." In 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013). IEEE, 2013. http://dx.doi.org/10.1109/isbi.2013.6556563.
Full textBathe, Mark, Claus Heussinger, Mireille Claessens, Andreas Bausch, and Erwin Frey. "Cytoskeletal Bundle Mechanics." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176170.
Full textAhmed, Sohail, Amy Chou, K. P. Sem, Sudaharan Thankiah, Graham Wright, John Lim, and Srivats Hariharan. "Using dSTORM to probe the molecular architecture of filopodia." In SPIE BiOS, edited by Jörg Enderlein, Ingo Gregor, Zygmunt K. Gryczynski, Rainer Erdmann, and Felix Koberling. SPIE, 2014. http://dx.doi.org/10.1117/12.2058123.
Full textJung, Uijin, Tetsuo Kan, Kenta Kuwana, Kiyoshi Matsumoto, and Isao Shimoyama. "Si nano-pillars for measuring traction force exerted by filopodia." In TRANSDUCERS 2011 - 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2011. http://dx.doi.org/10.1109/transducers.2011.5969359.
Full textLee, Chau-Hwang, Tsi-Hsuan Hsu, Wei-Yu Liao, Pan-Chyr Yang, Chun-Chieh Wang, and Jian-Long Xiao. "Cancer Cell Filopodia Characterized by Super-resolution Bright-field Optical Microscopy." In CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452966.
Full textWang, Jing, Svetlana V. Boriskina, Hongyun Wang, and Björn M. Reinhard. "Illuminating Epidermal Growth Factor Receptor Densities on Filopodia through Plasmon Coupling." In Optical Sensors. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/sensors.2012.sth2b.3.
Full textHeckman, Carol A., and Surya P. Amarachintha. "Abstract 3032: Role of ruffles and filopodia in adhesion gradient sensing." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-3032.
Full textDe Moura, Carlos, Mauricio Kritz, Thiago Leal, and Andreas Prokop. "Biological Systems at Sub-cellular Scale: Investigation of G-actin Transport in Filopodia." In CNMAC 2016 - XXXVI Congresso Nacional de Matemática Aplicada e Computacional. SBMAC, 2017. http://dx.doi.org/10.5540/03.2017.005.01.0068.
Full text