Academic literature on the topic 'Financial time series model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Financial time series model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Financial time series model"
Lupekesa, Chipasha Salome Bwalya, Johannes Tshepiso Tsoku, and Lebotsa Daniel Metsileng. "Econometric Modelling of Financial Time Series." International Journal of Management, Entrepreneurship, Social Science and Humanities 5, no. 2 (December 30, 2022): 52–70. http://dx.doi.org/10.31098/ijmesh.v5i2.622.
Full textInce, Huseyin, and Fatma Sonmez Cakir. "Analysis of financial time series with model hybridization." Pressacademia 4, no. 3 (September 30, 2017): 331–41. http://dx.doi.org/10.17261/pressacademia.2017.700.
Full textJiang, Hui, and Zhizhong Wang. "GMRVVm–SVR model for financial time series forecasting." Expert Systems with Applications 37, no. 12 (December 2010): 7813–18. http://dx.doi.org/10.1016/j.eswa.2010.04.058.
Full textFeng, Y., J. Beran, and K. Yu. "Modelling financial time series with SEMIFAR GARCH model." IMA Journal of Management Mathematics 18, no. 4 (April 26, 2007): 395–412. http://dx.doi.org/10.1093/imaman/dpm024.
Full textRichards, Gordon R. "A fractal forecasting model for financial time series." Journal of Forecasting 23, no. 8 (2004): 586–601. http://dx.doi.org/10.1002/for.927.
Full textAlhnaity, Bashar, and Maysam Abbod. "A new hybrid financial time series prediction model." Engineering Applications of Artificial Intelligence 95 (October 2020): 103873. http://dx.doi.org/10.1016/j.engappai.2020.103873.
Full textZhuravka, Fedir, Hanna Filatova, Petr Šuleř, and Tomasz Wołowiec. "State debt assessment and forecasting: time series analysis." Investment Management and Financial Innovations 18, no. 1 (January 28, 2021): 65–75. http://dx.doi.org/10.21511/imfi.18(1).2021.06.
Full textKiesel, Rüdiger, Magda Mroz, and Ulrich Stadtmüller. "Time-varying copula models for financial time series." Advances in Applied Probability 48, A (July 2016): 159–80. http://dx.doi.org/10.1017/apr.2016.48.
Full textMuhammad Najamuddin and Samreen Fatima. "Hybrid BRNN-ARIMA Model for Financial Time Series Forecasting." Sukkur IBA Journal of Computing and Mathematical Sciences 6, no. 1 (July 21, 2022): 62–71. http://dx.doi.org/10.30537/sjcms.v6i1.1027.
Full textKwak, Nae Won, and Dong Hoon Lim. "Financial time series forecasting using AdaBoost-GRU ensemble model." Journal of the Korean Data And Information Science Society 32, no. 2 (March 31, 2021): 267–81. http://dx.doi.org/10.7465/jkdi.2021.32.2.267.
Full textDissertations / Theses on the topic "Financial time series model"
Yin, Jiang Ling. "Financial time series analysis." Thesis, University of Macau, 2011. http://umaclib3.umac.mo/record=b2492929.
Full textKaranasos, Menelaos. "Essays on financial time series models." Thesis, Birkbeck (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286252.
Full textMashikian, Paul Stephan. "Multiresolution models of financial time series." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/43483.
Full textIncludes bibliographical references (leaves 89-92).
by Paul Stephan Mashikian.
M.Eng.
Nacaskul, Poomjai. "Evolutionary optimisation and financial model-trading." Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298802.
Full textWong, Wing-mei. "Some topics in model selection in financial time series analysis." Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B23273112.
Full textCoroneo, Laura. "Essays on modelling and forecasting financial time series." Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210284.
Full textThe first chapter investigates the distribution of high frequency financial returns, with special emphasis on the intraday seasonality. Using quantile regression, I show the expansions and shrinks of the probability law through the day for three years of 15 minutes sampled stock returns. Returns are more dispersed and less concentrated around the median at the hours near the opening and closing. I provide intraday value at risk assessments and I show how it adapts to changes of dispersion over the day. The tests performed on the out-of-sample forecasts of the value at risk show that the model is able to provide good risk assessments and to outperform standard Gaussian and Student’s t GARCH models.
The second chapter shows that macroeconomic indicators are helpful in forecasting the yield curve. I incorporate a large number of macroeconomic predictors within the Nelson and Siegel (1987) model for the yield curve, which can be cast in a common factor model representation. Rather than including macroeconomic variables as additional factors, I use them to extract the Nelson and Siegel factors. Estimation is performed by EM algorithm and Kalman filter using a data set composed by 17 yields and 118 macro variables. Results show that incorporating large macroeconomic information improves the accuracy of out-of-sample yield forecasts at medium and long horizons.
The third chapter statistically tests whether the Nelson and Siegel (1987) yield curve model is arbitrage-free. Theoretically, the Nelson-Siegel model does not ensure the absence of arbitrage opportunities. Still, central banks and public wealth managers rely heavily on it. Using a non-parametric resampling technique and zero-coupon yield curve data from the US market, I find that the no-arbitrage parameters are not statistically different from those obtained from the Nelson and Siegel model, at a 95 percent confidence level. I therefore conclude that the Nelson and Siegel yield curve model is compatible with arbitrage-freeness.
Doctorat en Sciences économiques et de gestion
info:eu-repo/semantics/nonPublished
王詠媚 and Wing-mei Wong. "Some topics in model selection in financial time series analysis." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31225366.
Full textYiu, Fu-keung, and 饒富強. "Time series analysis of financial index." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B31267804.
Full textHaas, Markus. "Dynamic mixture models for financial time series /." Berlin : Pro Business, 2004. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=012999049&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textYAN, HONGXUAN. "Generalised linear Gegenbauer long memory models for time series of counts with financial and insurance applications." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/19660.
Full textBooks on the topic "Financial time series model"
Jens-Peter, Kreiß, Davis Richard A, Andersen Torben Gustav, and SpringerLink (Online service), eds. Handbook of Financial Time Series. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2009.
Find full textMills, T. C. Econometric modelling of financial time series. Cambridge: Cambridge University Press, 1995.
Find full textTsay, Ruey S. Analysis of financial time series: Financial econometrics. New York: Wiley, 2002.
Find full textTsay, Ruey S. Analysis of Financial Time Series. New York: John Wiley & Sons, Ltd., 2005.
Find full textChristian, Dunis, and Zhou Bin 1956-, eds. Nonlinear modelling of high frequency financial time series. Chichester [England]: Wiley, 1998.
Find full textThe econometric modelling of financial time series. Cambridge: Cambridge University Press, 1993.
Find full textBook chapters on the topic "Financial time series model"
Old, Oliver. "Financial time series." In Modeling Time-Varying Unconditional Variance by Means of a Free-Knot Spline-GARCH Model, 13–31. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-38618-4_2.
Full textLeeb, Hannes, and Benedikt M. Pötscher. "Model Selection." In Handbook of Financial Time Series, 889–925. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-71297-8_39.
Full textBorak, Szymon, Wolfgang Karl Härdle, and Brenda López Cabrera. "Financial Time Series Models." In Statistics of Financial Markets, 123–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11134-1_11.
Full textBorak, Szymon, Wolfgang Karl Härdle, and Brenda López-Cabrera. "Financial Time Series Models." In Universitext, 131–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33929-5_11.
Full textLee, Cheng-Few, Hong-Yi Chen, and John Lee. "Time Series: Analysis, Model, and Forecasting." In Financial Econometrics, Mathematics and Statistics, 279–316. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9429-8_10.
Full textBorak, Szymon, Wolfgang Karl Härdle, and Brenda López Cabrera. "ARIMA Time Series Models." In Statistics of Financial Markets, 135–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11134-1_12.
Full textFranke, Jürgen, Wolfgang Karl Härdle, and Christian Matthias Hafner. "ARIMA Time Series Models." In Statistics of Financial Markets, 255–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16521-4_12.
Full textChe-Ngoc, Ha, Tai Vo-Van, Quoc-Chanh Huynh-Le, Vu Ho, Thao Nguyen-Trang, and Minh-Tuyet Chu-Thi. "An Improved Fuzzy Time Series Forecasting Model." In Econometrics for Financial Applications, 474–90. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-73150-6_38.
Full textLee, Cheng-Few, John C. Lee, and Alice C. Lee. "Time Series: Analysis, Model, and Forecasting." In Statistics for Business and Financial Economics, 927–72. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5897-5_18.
Full textZucchini, Walter, Iain L. MacDonald, and Roland Langrock. "Models for financial series." In Hidden Markov Models for Time Series, 259–73. Second edition / Walter Zucchini, Iain L. MacDonald, and Roland Langrock. | Boca Raton : Taylor & Francis, 2016. | Series: Monographs on statistics and applied probability ; 150 | “A CRC title.”: Chapman and Hall/CRC, 2017. http://dx.doi.org/10.1201/b20790-20.
Full textConference papers on the topic "Financial time series model"
Kelany, Omnia, Sherin Aly, and Mohamed A. Ismail. "Deep Learning Model for Financial Time Series Prediction." In 2020 14th International Conference on Innovations in Information Technology (IIT). IEEE, 2020. http://dx.doi.org/10.1109/iit50501.2020.9299063.
Full textJingtao Yao and Chew Lim Tan. "Time dependent directional profit model for financial time series forecasting." In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium. IEEE, 2000. http://dx.doi.org/10.1109/ijcnn.2000.861475.
Full textZhang, Haiying, Qiaomei Liang, Rongqi Wang, and Qingqiang Wu. "Stacked Model with Autoencoder for Financial Time Series Prediction." In 2020 15th International Conference on Computer Science & Education (ICCSE). IEEE, 2020. http://dx.doi.org/10.1109/iccse49874.2020.9201745.
Full textAraujo, Ricardo de A., Adriano L. I. Oliveira, and Silvio Meira. "A prediction model for high-frequency financial time series." In 2015 International Joint Conference on Neural Networks (IJCNN). IEEE, 2015. http://dx.doi.org/10.1109/ijcnn.2015.7280487.
Full textKhandelwal, Ina, Udit Satija, and Ratnadip Adhikari. "Efficient financial time series forecasting model using DWT decomposition." In 2015 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). IEEE, 2015. http://dx.doi.org/10.1109/conecct.2015.7383917.
Full textChaozhi, Cheng, Gao Yachun, and Jingwei Ni. "Financial Time Series Prediction Model Based Recurrent Neural Network." In 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). IEEE, 2020. http://dx.doi.org/10.1109/iccwamtip51612.2020.9317371.
Full textRaimundo, Milton Saulo, and Jun Okamoto. "SVR-wavelet adaptive model for forecasting financial time series." In 2018 International Conference on Information and Computer Technologies (ICICT). IEEE, 2018. http://dx.doi.org/10.1109/infoct.2018.8356851.
Full textGuan, Yu Jie. "Financial time series forecasting model based on CEEMDAN-LSTM." In 2022 4th International Conference on Advances in Computer Technology, Information Science and Communications (CTISC). IEEE, 2022. http://dx.doi.org/10.1109/ctisc54888.2022.9849780.
Full textNi, He. "Topology Regressive Distributed Model for Financial Time Series Prediction." In 2009 Fifth International Conference on Natural Computation. IEEE, 2009. http://dx.doi.org/10.1109/icnc.2009.619.
Full textZheng, Hua, Li Xie, and Lizi Zhang. "Intelligence Model for the Sensitivity Analysis of Financial Time Series." In Third International Conference on Natural Computation (ICNC 2007). IEEE, 2007. http://dx.doi.org/10.1109/icnc.2007.446.
Full textReports on the topic "Financial time series model"
Soloviev, V., V. Saptsin, and D. Chabanenko. Financial time series prediction with the technology of complex Markov chains. Брама-Україна, 2014. http://dx.doi.org/10.31812/0564/1305.
Full textСоловйов, Володимир Миколайович, V. Saptsin, and D. Chabanenko. Financial time series prediction with the technology of complex Markov chains. Transport and Telecommunication Institute, 2010. http://dx.doi.org/10.31812/0564/1145.
Full textСоловйов, Володимир Миколайович, Vladimir Saptsin, and Dmitry Chabanenko. Prediction of financial time series with the technology of high-order Markov chains. AGSOE, March 2009. http://dx.doi.org/10.31812/0564/1131.
Full textСоловйов, В. М., В. В. Соловйова, and Д. М. Чабаненко. Динаміка параметрів α-стійкого процесу Леві для розподілів прибутковостей фінансових часових рядів. ФО-П Ткачук О. В., 2014. http://dx.doi.org/10.31812/0564/1336.
Full textBielinskyi, Andrii O., Oleksandr A. Serdyuk, Сергій Олексійович Семеріков, Володимир Миколайович Соловйов, Андрій Іванович Білінський, and О. А. Сердюк. Econophysics of cryptocurrency crashes: a systematic review. Криворізький державний педагогічний університет, December 2021. http://dx.doi.org/10.31812/123456789/6974.
Full textBielinskyi, Andrii O., Serhii V. Hushko, Andriy V. Matviychuk, Oleksandr A. Serdyuk, Сергій Олексійович Семеріков, Володимир Миколайович Соловйов, Андрій Іванович Білінський, Андрій Вікторович Матвійчук, and О. А. Сердюк. Irreversibility of financial time series: a case of crisis. Криворізький державний педагогічний університет, December 2021. http://dx.doi.org/10.31812/123456789/6975.
Full textLi, Degui, Oliver Linton, and Zudi Lu. A flexible semiparametric model for time series. Institute for Fiscal Studies, September 2012. http://dx.doi.org/10.1920/wp.cem.2012.2812.
Full textOsipov, Gennadij Sergeevich, Natella Semenovna Vashakidze, and Galina Viktorovna Filippova. Basics of forecasting financial time series based on NeuroXL Predictor. Постулат, 2017. http://dx.doi.org/10.18411/postulat-2017-7.
Full textСоловйов, Володимир Миколайович, V. Saptsin, and D. Chabanenko. Markov chains applications to the financial-economic time series predictions. Transport and Telecommunication Institute, 2011. http://dx.doi.org/10.31812/0564/1189.
Full textDiakonova, Marina, Corinna Ghirelli, Luis Molina, and Javier J. Pérez. The economic impact of conflict-related and policy uncertainty shocks: the case of Russia. Madrid: Banco de España, November 2022. http://dx.doi.org/10.53479/23707.
Full text