Academic literature on the topic 'Fingerprint Verification Competition (FVC) databases'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fingerprint Verification Competition (FVC) databases.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fingerprint Verification Competition (FVC) databases"

1

Jiang, Yujia, and Xin Liu. "Uniform Local Binary Pattern for Fingerprint Liveness Detection in the Gaussian Pyramid." Journal of Electrical and Computer Engineering 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/1539298.

Full text
Abstract:
Fingerprint recognition schemas are widely used in our daily life, such as Door Security, Identification, and Phone Verification. However, the existing problem is that fingerprint recognition systems are easily tricked by fake fingerprints for collaboration. Therefore, designing a fingerprint liveness detection module in fingerprint recognition systems is necessary. To solve the above problem and discriminate true fingerprint from fake ones, a novel software-based liveness detection approach using uniform local binary pattern (ULBP) in spatial pyramid is applied to recognize fingerprint liveness in this paper. Firstly, preprocessing operation for each fingerprint is necessary. Then, to solve image rotation and scale invariance, three-layer spatial pyramids of fingerprints are introduced in this paper. Next, texture information for three layers spatial pyramids is described by using uniform local binary pattern to extract features of given fingerprints. The accuracy of our proposed method has been compared with several state-of-the-art methods in fingerprint liveness detection. Experiments based on standard databases, taken from Liveness Detection Competition 2013 composed of four different fingerprint sensors, have been carried out. Finally, classifier model based on extracted features is trained using SVM classifier. Experimental results present that our proposed method can achieve high recognition accuracy compared with other methods.
APA, Harvard, Vancouver, ISO, and other styles
2

"Minutiae Based Fingerprint Verification using Graph Model." International Journal of Engineering and Advanced Technology 8, no. 6 (2019): 1568–75. http://dx.doi.org/10.35940/ijeat.f8165.088619.

Full text
Abstract:
Fingerprints offer one of the most reliable biometric traits that can be used for uniquely identifying a person. This proposed work demonstrates the use of graph theory in the field of fingerprint identification, in which a fingerprint is casted to a weighted complete graph and a weight matrix of this graph is used to describe the regions in the image and then checked for biometric authentication without considering Henry's classes. It further implements the concept of graph isomorphism along with edge mapping for matching of fingerprints which portrays the potential of graph-based methods for fingerprint representation, storage, and matching. The proposed algorithm is robust to non-linear distortion, rotation and scaling. The algorithm is tested on a database of Fingerprint Verification Competition (FVC) and has been found to be an efficient and a reliable one as compared to image processing which deals with the entire image for comparison between two fingerprints using pattern recognition
APA, Harvard, Vancouver, ISO, and other styles
3

Lahmidi, Ayoub, Khalid Minaoui, Chouaib Moujahdi, and Mohammed Rziza. "Fingerprint Template Protection Using Irreversible Minutiae Tetrahedrons." Computer Journal, August 5, 2021. http://dx.doi.org/10.1093/comjnl/bxab111.

Full text
Abstract:
Abstract The use of fingerprint continues to increase constantly with the propagation of biometric authentication technologies. Fingerprint is today the most widely used biometric modality for human verification and identification, due to its practical use and its discriminative structure that allows to different identities to be easily distinguished. Unfortunately, this emergence has been accompanied by a number of problems and challenges related to identity theft and to security issues in general. To address these concerns, many approaches have been proposed in which only few of them were able to reach an acceptable level of both security and performance. In this paper, we propose a new fingerprint template protection scheme that enhances the security of protected system while preserving performance. The proposed approach is a minutiae-based technique that performs fingerprint matching in a transformed space using irreversible minutiae tetrahedrons. Using the original Fingerprint Verification Competition (FVC) protocol, the provided experimental results on FVC2002 DB1, DB2 and DB3 fingerprint databases have shown satisfactory recognition rates. Our results are compared to some existing techniques that use the same protocol of test. We have proved as well that the proposed scheme meets the requirements of revocability, unlinkability and irreversibility.
APA, Harvard, Vancouver, ISO, and other styles
4

Perez-Diaz, A. J., and I. C. Arronte-Lopez. "Fingerprint Matching and Non-Matching Analysis for Different Tolerance Rotation Degrees in Commercial Matching Algorithms." Journal of Applied Research and Technology 8, no. 02 (2010). http://dx.doi.org/10.22201/icat.16656423.2010.8.02.469.

Full text
Abstract:
Fingerprint verification is the most important step in the fingerprint-based biometric systems. The matching score is linked to the chance of identifying a person. Nowadays, two fingerprint matching methods are the most popular: the correlation-based method and the minutiae-based method. In this work, three biometric systems were evaluated: Neurotechnology Verifinger 6.0 Extended, Innovatrics IDKit SDK and Griaule Fingerprint SDK 2007. The evaluation was performed according to the experiments of the Fingerprint Verification Competition (FVC). The influence of the fingerprint rotation degrees on false match rate (FMR) and false non-match rate (FNMR) was evaluated. The results showed that the FMR values increase as rotation degrees increase too, meanwhile, the FNMR values decrease. Experimental results demonstrate that Verifinger SDK shows good performance on false non-match testing, with an FNMR mean of 7%, followed by IDKit SDK (6.71% ~ 13.66%) and Fingerprint SDK (50%). However, Fingerprint SDK demonstrates a better performance on false match testing, with an FMR mean of ~0%, followed by Verifinger SDK (7.62% - 9%) and IDKit SDK (above 28%). As result of the experiments, Verifinger SDK had, in general, the best performance. Subsequently, we calculated the regression functions to predict the behavior of FNMR and FMR for different threshold values with different rotation degrees.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Fingerprint Verification Competition (FVC) databases"

1

Falade, Joannes Chiderlos. "Identification rapide d'empreintes digitales, robuste à la dissimulation d'identité." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMC231.

Full text
Abstract:
La biométrie est de plus en plus utilisée à des fins d’identification compte tenu de la relation étroite entre la personne et son identifiant (comme une empreinte digitale). Nous positionnons cette thèse sur la problématique de l’identification d’individus à partir de ses empreintes digitales. L’empreinte digitale est une donnée biométrique largement utilisée pour son efficacité, sa simplicité et son coût d’acquisition modeste. Les algorithmes de comparaison d’empreintes digitales sont matures et permettent d’obtenir en moins de 500 ms un score de similarité entre un gabarit de référence (stocké sur un passeport électronique ou une base de données) et un gabarit acquis. Cependant, il devient très important de déterminer l'identité d'un individu contre une population entière en un temps très court (quelques secondes). Ceci représente un enjeu important compte tenu de la taille de la base de données biométriques (contenant un ensemble d’individus de l’ordre d’un pays). Par exemple, avant de délivrer un nouveau passeport à un individu qui en fait la demande, il faut faire une recherche d'identification sur la base des données biométriques du pays afin de s'assurer que ce dernier n'en possède pas déjà un autre mais avec les mêmes empreintes digitales (éviter les doublons). Ainsi, la première partie du sujet de cette thèse concerne l’identification des individus en utilisant les empreintes digitales. D’une façon générale, les systèmes biométriques ont pour rôle d’assurer les tâches de vérification (comparaison 1-1) et d’identification (1-N). Notre sujet se concentre sur l’identification avec N étant à l’échelle du million et représentant la population d’un pays par exemple. Dans le cadre de nos travaux, nous avons fait un état de l’art sur les méthodes d’indexation et de classification des bases de données d’empreintes digitales. Nous avons privilégié les représentations binaires des empreintes digitales pour indexation. Tout d’abord, nous avons réalisé une étude bibliographique et rédigé un support sur l’état de l’art des techniques d’indexation pour la classification des empreintes digitales. Ensuite, nous avons explorer les différentes représentations des empreintes digitales, puis réaliser une prise en main et l’évaluation des outils disponibles à l’imprimerie Nationale (IN Groupe) servant à l'extraction des descripteurs représentant une empreinte digitale. En partant de ces outils de l’IN, nous avons implémenté quatre méthodes d’identification sélectionnées dans l’état de l’art. Une étude comparative ainsi que des améliorations ont été proposées sur ces méthodes. Nous avons aussi proposé une nouvelle solution d'indexation d'empreinte digitale pour réaliser la tâche d’identification qui améliore les résultats existant. Les différents résultats sont validés sur des bases de données de tailles moyennes publiques et nous utilisons le logiciel Sfinge pour réaliser le passage à l’échelle et la validation complète des stratégies d’indexation. Un deuxième aspect de cette thèse concerne la sécurité. Une personne peut avoir en effet, la volonté de dissimuler son identité et donc de mettre tout en œuvre pour faire échouer l’identification. Dans cette optique, un individu peut fournir une empreinte de mauvaise qualité (portion de l’empreinte digitale, faible contraste en appuyant peu sur le capteur…) ou fournir une empreinte digitale altérée (empreinte volontairement abîmée, suppression de l’empreinte avec de l’acide, scarification…). Il s'agit donc dans la deuxième partie de cette thèse de détecter les doigts morts et les faux doigts (silicone, impression 3D, empreinte latente) utilisés par des personnes mal intentionnées pour attaquer le système. Nous avons proposé une nouvelle solution de détection d'attaque basée sur l'utilisation de descripteurs statistiques sur l'empreinte digitale. Aussi, nous avons aussi mis en place trois chaînes de détections des faux doigts utilisant les techniques d'apprentissages profonds<br>Biometrics are increasingly used for identification purposes due to the close relationship between the person and their identifier (such as fingerprint). We focus this thesis on the issue of identifying individuals from their fingerprints. The fingerprint is a biometric data widely used for its efficiency, simplicity and low cost of acquisition. The fingerprint comparison algorithms are mature and it is possible to obtain in less than 500 ms a similarity score between a reference template (enrolled on an electronic passport or database) and an acquired template. However, it becomes very important to check the identity of an individual against an entire population in a very short time (a few seconds). This is an important issue due to the size of the biometric database (containing a set of individuals of the order of a country). Thus, the first part of the subject of this thesis concerns the identification of individuals using fingerprints. Our topic focuses on the identification with N being at the scale of a million and representing the population of a country for example. Then, we use classification and indexing methods to structure the biometric database and speed up the identification process. We have implemented four identification methods selected from the state of the art. A comparative study and improvements were proposed on these methods. We also proposed a new fingerprint indexing solution to perform the identification task which improves existing results. A second aspect of this thesis concerns security. A person may want to conceal their identity and therefore do everything possible to defeat the identification. With this in mind, an individual may provide a poor quality fingerprint (fingerprint portion, low contrast by lightly pressing the sensor...) or provide an altered fingerprint (impression intentionally damaged, removal of the impression with acid, scarification...). It is therefore in the second part of this thesis to detect dead fingers and spoof fingers (silicone, 3D fingerprint, latent fingerprint) used by malicious people to attack the system. In general, these methods use machine learning techniques and deep learning. Secondly, we proposed a new presentation attack detection solution based on the use of statistical descriptors on the fingerprint. Thirdly, we have also build three presentation attacks detection workflow for fake fingerprint using deep learning. Among these three deep solutions implemented, two come from the state of the art; then the third an improvement that we propose. Our solutions are tested on the LivDet competition databases for presentation attack detection
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography