Academic literature on the topic 'Finite difference method of analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Finite difference method of analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Finite difference method of analysis"
Tang, Hui, Xiao Jun Li, Guo Liang Zhou, and Chun Ming Zhang. "Finite/Explicit Finite Element - Finite Difference Coupling Method for Analysis of Soil - Foundation System." Advanced Materials Research 838-841 (November 2013): 913–17. http://dx.doi.org/10.4028/www.scientific.net/amr.838-841.913.
Full textDow, John O., Michael S. Jones, and Shawn A. Harwood. "A generalized finite difference method for solid mechanics." Numerical Methods for Partial Differential Equations 6, no. 2 (1990): 137–52. http://dx.doi.org/10.1002/num.1690060204.
Full textDow, John O., and Ian Stevenson. "Adaptive refinement procedure for the finite difference method." Numerical Methods for Partial Differential Equations 8, no. 6 (November 1992): 537–50. http://dx.doi.org/10.1002/num.1690080604.
Full textISHIKAWA, Mikihito, Toshihito OHMI, A. Toshimitsu YOKOBORI Jr., and Masaaki NISHIMURA. "OS1010 The Hydrogen Diffusion Analysis by Finite Element Method and Finite Difference Method." Proceedings of the Materials and Mechanics Conference 2014 (2014): _OS1010–1_—_OS1010–3_. http://dx.doi.org/10.1299/jsmemm.2014._os1010-1_.
Full textGupta, Dr A. R. "Comparative analysis of Rectangular Plate by Finite element method and Finite Difference Method." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (September 30, 2021): 1399–402. http://dx.doi.org/10.22214/ijraset.2021.38153.
Full textGupta, Dr A. R. "Comparative analysis of Rectangular Plate by Finite element method and Finite Difference Method." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (September 30, 2021): 1397–98. http://dx.doi.org/10.22214/ijraset.2021.38152.
Full textAshyralyyev, Charyyar, Ayfer Dural, and Yasar Sozen. "Finite Difference Method for the Reverse Parabolic Problem." Abstract and Applied Analysis 2012 (2012): 1–17. http://dx.doi.org/10.1155/2012/294154.
Full textYang, Dongquan, M. K. Rahman, and Yibai Chen. "Bottomhole assembly analysis by finite difference differential method." International Journal for Numerical Methods in Engineering 74, no. 9 (2008): 1495–517. http://dx.doi.org/10.1002/nme.2221.
Full textVirdi, Kuldeep S. "Finite difference method for nonlinear analysis of structures." Journal of Constructional Steel Research 62, no. 11 (November 2006): 1210–18. http://dx.doi.org/10.1016/j.jcsr.2006.06.015.
Full textTang, X. W., and X. W. Zhang. "Seismic liquefaction analysis by a modified finite element-finite difference method." Japanese Geotechnical Society Special Publication 2, no. 33 (2016): 1204–7. http://dx.doi.org/10.3208/jgssp.chn-58.
Full textDissertations / Theses on the topic "Finite difference method of analysis"
Lidgate, Simon. "Advanced finite difference - beam propagation : method analysis of complex components." Thesis, University of Nottingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.408596.
Full textBasson, Gysbert. "An explicit finite difference method for analyzing hazardous rock mass." Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/17957.
Full textENGLISH ABSTRACT: FLAC3D is a three-dimensional explicit nite difference program for solving a variety of solid mechanics problems, both linear and non-linear. The development of the algorithm and its initial implementation were performed by Itasca Consulting Group Inc. The main idea of the algorithm is to discritise the domain of interest into a Lagrangian grid where each cell represents an element of the material. Each cell can then deform according to a prescribed stress/strain law together with the equations of motion. An in-depth study of the algorithm was performed and implemented in Java. During the implementation, it was observed that the type of boundary conditions typically used has a major in uence on the accuracy of the results, especially when boundaries are close to regions with large stress variations, such as in mining excavations. To improve the accuracy of the algorithm, a new type of boundary condition was developed where the FLAC3D domain is embedded in a linear elastic material, named the Boundary Node Shell (BNS). Using the BNS shows a signi cant improvement in results close to excavations. The FLAC algorithm is also quite amendable to paralellization and a multi-threaded version that makes use of multiple Central Processing Unit (CPU) cores was developed to optimize the speed of the algorithm. The nal outcome is new non-commercial Java source code (JFLAC) which includes the Boundary Node Shell (BNS) and shared memory parallelism over and above the basic FLAC3D algorithm.
AFRIKAANSE OPSOMMING: FLAC3D is 'n eksplisiete eindige verskil program wat 'n verskeidenheid liniêre en nieliniêre soliede meganika probleme kan oplos. Die oorspronklike algoritme en die implimentasies daarvan was deur Itasca Consulting Group Inc. toegepas. Die hoo dee van die algoritme is om 'n gebied te diskritiseer deur gebruik te maak van 'n Lagrangese rooster, waar elke sel van die rooster 'n element van die rooster materiaal beskryf. Elke sel kan dan vervorm volgens 'n sekere spannings/vervormings wet. 'n Indiepte ondersoek van die algoritme was uitgevoer en in Java geïmplimenteer. Tydens die implementering was dit waargeneem dat die grense van die rooster 'n groot invloed het op die akkuraatheid van die resultate. Dit het veral voorgekom in areas waar stress konsentrasies hoog is, gewoonlik naby areas waar myn uitgrawings gemaak is. Dit het die ontwikkelling van 'n nuwe tipe rand kondisie tot gevolg gehad, sodat die akkuraatheid van die resultate kon verbeter. Die nuwe rand kondisie, genaamd die Grens Node Omhulsel (GNO), aanvaar dat die gebied omring is deur 'n elastiese materiaal, wat veroorsaak dat die grense van die gebied 'n elastiese reaksie het op die stress binne die gebied. Die GNO het 'n aansienlike verbetering in die resultate getoon, veral in areas naby myn uitgrawings. Daar was ook waargeneem dat die FLAC algoritme parralleliseerbaar is en het gelei tot die implentering van 'n multi-SVE weergawe van die sagteware om die spoed van die algoritme te optimeer. Die nale uitkomste is 'n nuwe nie-kommersiële Java weergawe van die algoritme (JFLAC), wat die implimentering van die nuwe GNO randwaardekondisie insluit, asook toelaat vir die gebruik van multi- Sentrale Verwerkings Eenheid (SVE) as 'n verbetering op die basiese FLAC3D algoritme.
Meagher, Timothy P. "A New Finite Difference Time Domain Method to Solve Maxwell's Equations." PDXScholar, 2018. https://pdxscholar.library.pdx.edu/open_access_etds/4389.
Full textCai, Ming. "Finite difference time domain method and its application in antenna analysis." Thesis, London South Bank University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263739.
Full textGarg, Nimisha. "Analysis of Slot Antennas Using the Finite Difference Time Domain Method." FIU Digital Commons, 2001. https://digitalcommons.fiu.edu/etd/3843.
Full textEzertas, Ahmet Alper. "Sensitivity Analysis Using Finite Difference And Analytical Jacobians." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12611067/index.pdf.
Full texts method with direct sparse matrix solution technique, is developed for the Euler flow equations. Flux Jacobian is evaluated both numerically and analytically for different upwind flux discretization schemes with second order MUSCL face interpolation. Numerical flux Jacobian matrices that are derived with wide range of finite difference perturbation magnitudes were compared with analytically derived ones and the optimum perturbation magnitude, which minimizes the error in the numerical evaluation, is searched. The factors that impede the accuracy are analyzed and a simple formulation for optimum perturbation magnitude is derived. The sensitivity derivatives are evaluated by direct-differentiation method with discrete approach. The reuse of the LU factors of the flux Jacobian that are evaluated in the flow solution enabled efficient sensitivity analysis. The sensitivities calculated by the analytical Jacobian are compared with the ones that are calculated by numerically evaluated Jacobian matrices. Both internal and external flow problems with varying flow speeds, varying grid types and sizes are solved with different discretization schemes. In these problems, when the optimum perturbation magnitude is used for numerical Jacobian evaluation, the errors in Jacobian matrix and the sensitivities are minimized. Finally, the effect of the accuracy of the sensitivities on the design optimization cycle is analyzed for an inverse airfoil design performed with least squares minimization.
Roth, Jacob M. "The Explicit Finite Difference Method: Option Pricing Under Stochastic Volatility." Scholarship @ Claremont, 2013. http://scholarship.claremont.edu/cmc_theses/545.
Full textEgorova, Vera. "Finite Difference Methods for nonlinear American Option Pricing models: Numerical Analysis and Computing." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/68501.
Full text[ES] La presente tesis doctoral se centra en la construcción de esquemas en diferencias finitas y el análisis numérico de relevantes modelos de valoración de opciones que generalizan el modelo de Black-Scholes. Se proporciona un análisis cuidadoso de las propiedades de las soluciones numéricas tales como la positividad, la estabilidad y la consistencia. Con el fin de manejar la frontera libre que surge en los problemas de valoración de opciones Americanas, se aplican y se estudian diversas técnicas de transformación basadas en el método de fijación de las fronteras (front-fixing). Se presta especial atención a la valoración de opciones de múltiples activos, como son las opciones ''exchange'' y ''spread''. Esta tesis se compone de seis capítulos. El primer capítulo es una introducción que contiene las definiciones de opción y términos relacionados y la derivación de la ecuación de Black-Scholes, así como aspectos generales de la teoría de los esquemas en diferencias finitas, incluyendo preliminares de análisis numérico. El capítulo 2 está dedicado a resolver el modelo lineal de Black-Scholes para opciones Americanas put y call. Para fijar las fronteras del problema de frontera libre se aplican transformaciones como la de Landau y un nuevo cambio de variable propuesto. La eficiencia del método front-fixing mostrada en el capítulo 2 ha motivado el estudio de su aplicación a algunos modelos no lineales más complicados. En particular, se propone un cambio de variables que lleva a una nueva frontera dependiente del tiempo en lugar de una fija. Este cambio se aplica a modelos no lineales de Black-Scholes para opciones Americanas, como son el de Barles y Soner y el modelo RAPM (Risk Adjusted Pricing Methodology). El capítulo 4 ofrece una nueva técnica para la resolución de problemas de valoración de opciones Americanas basada en la racionalidad de los inversores. Aparece una función de la intensidad que se puede reducir en el caso más simple a la técnica de penalización (penalty method). Este enfoque tiene en cuenta el posible comportamiento irracional de los inversores. En la sección 4.2 se aplica esta técnica al modelo de cambio de regímenes lo que lleva a un nuevo modelo que tiene en cuenta el posible ejercicio irracional, así como varios estados del mercado. El enfoque del parámetro de racionalidad junto con una transformación logarítmica permiten construir un esquema numérico eficiente sin aplicar el método front-fixing o la conocida formulación de LCP (Linear Complementarity Problem). El capítulo 5 se dedica a la valoración de opciones de activos múltiples. Una transformación apropiada permite la eliminación del término de derivadas cruzadas evitando inconvenientes computacionales y posibles problemas de estabilidad. Las conclusiones se muestran en el capítulo 6. Se pone en relieve varios aspectos de la presente tesis. Todos los modelos considerados y los métodos numéricos van acompañados de varios ejemplos y simulaciones. Se estudia la convergencia numérica que confirma el estudio teórico de la consistencia. Las condiciones de estabilidad son corroboradas con ejemplos numéricos. Los resultados se comparan con métodos relevantes de la bibliografía mostrando la eficiencia de los métodos propuestos.
[CAT] La present tesi doctoral se centra en la construcció d'esquemes en diferències finites i l'anàlisi numèrica de rellevants models de valoració d'opcions que generalitzen el model de Black-Scholes. Es proporciona una anàlisi cuidadosa de les propietats de les solucions numèri-ques com ara la positivitat, l'estabilitat i la consistència. A fi de manejar la frontera lliure que sorgix en els problemes de valoració d'opcions Americanes, s'apliquen i s'estudien diverses tècniques de transformació basades en el mètode de fixació de les fronteres (front-fixing). Es presta especial atenció a la valoració d'opcions de múltiples actius, com són les opcions ''exchange'' i ''spread''. Esta tesi es compon de sis capítols. El primer capítol és una introducció que conté les definicions d'opció i termes relacionats i la derivació de l'equació de Black-Scholes, així com aspectes generals de la teoria dels esquemes en diferències finites, incloent aspectes preliminars d'anàlisi numèrica. El 2n capítol està dedicat a resoldre el model lineal de Black-Scholes per a opcions Americanes ''put'' i ''call''. Per a fixar les fronteres del problema de frontera lliure s'apliquen transformacions com la de Landau i s'ha proposat un nou canvi de variable proposat. Açò porta a una equació diferencial en derivades parcials no lineal en un domini fix. L'eficiència del mètode front-fixing mostrada en el 2n capítol ha motivat l'estudi de la seua aplicació a alguns models no lineals més complicats. En particular, es proposa un canvi de variables que porta a una nova frontera dependent del temps en compte d'una fixa. Este canvi s'aplica a models no lineals de Black-Scholes per a opcions Americanes, com són el de Barles i Soner i el model RAPM (Risk Adjusted Pricing Methodology). El 4t capítol oferix una nova tècnica per a la resolució de problemes de valoració d'opcions Americanes basada en la racionalitat dels inversors. Apareix una funció de la intensitat que es pot reduir en el cas més simple a la tècnica de penalització (penal method) . Este enfocament té en compte el possible comportament irracional dels inversors. En la secció 4.2 s'aplica esta tècnica al model de canvi de règims el que porta a un nou model que té en compte el possible exercici irracional, així com diversos estats del mercat. L'enfocament del paràmetre de racionalitat junt amb una transformació logarítmica permeten construir un esquema numèric eficient sense aplicar el mètode front-fixing o la coneguda formulació de LCP (Linear Complementarity Problem). El 5é capítol es dedica a la valoració d'opcions d'actius múltiples. Una transformació apropiada permet l'eliminació del terme de derivades mixtes evitant inconvenients computacionals i possibles problemes d' estabilitat. Les conclusions es mostren al 6é capítol. Es posa en relleu diversos aspectes de la present tesi. Tots els models considerats i els mètodes numèrics van acompanyats de diversos exemples i simulacions. S'estu-dia la convergència numèrica que confirma l'estudi teòric de la consistència. Les condicions d'estabilitat són corroborades amb exemples numèrics. Els resultats es comparen amb mètodes rellevants de la bibliografia mostrant l'eficiència dels mètodes proposats.
Egorova, V. (2016). Finite Difference Methods for nonlinear American Option Pricing models: Numerical Analysis and Computing [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/68501
TESIS
Premiado
Turan, Umut. "Simulation Of A Batch Dryer By The Finite Difference Method." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606478/index.pdf.
Full textWang, Siyang. "Finite Difference and Discontinuous Galerkin Methods for Wave Equations." Doctoral thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-320614.
Full textBooks on the topic "Finite difference method of analysis"
J, Luebbers Raymond, ed. The finite difference time domain method for electromagnetics. Boca Raton: CRC Press, 1993.
Find full textApplications of discrete functional analysis to the finite difference method. Beijing: International Academic Publishers, 1991.
Find full textZhou, Yulin. Applications of discrete functional analysis to the finite difference method. Oxford: International Academic Publishers, 1991.
Find full textBaysal, Oktay. An overlapped grid method for multigrid, finite volume/difference flow solvers - MaGGiE. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Find full text1946-, Chen Zhongying, and Wu Wei 1929-, eds. Generalized difference methods for differential equations: Numerical analysis of finite volume methods. New York: M. Dekker, 2000.
Find full textHesthaven, Jan S. A waverlet optimized adaptive multi-domain method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Find full textInan, Umran S. Numerical electromagnetics: The FDTD method. Cambridge: Cambridge University Press, 2011.
Find full textBaker, A. J. Analysis of boundary conditions for SSME subsonic internal viscous flow analysis. Knoxville, TN: Computational Mechanics Corporation, 1986.
Find full textBaker, A. J. Analysis of boundary conditions for SSME subsonic internal viscous flow analysis. Knoxville, TN: Computational Mechanics Corporation, 1986.
Find full textFinlayson, Bruce A. Numerical methods for problems with moving fronts. Seattle, Wash., USA: Ravenna Park Pub., 1992.
Find full textBook chapters on the topic "Finite difference method of analysis"
Zhou, Pei-bai. "Finite Difference Method." In Numerical Analysis of Electromagnetic Fields, 63–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-50319-1_3.
Full textChekmarev, Dmitry T. "Some Results of FEM Schemes Analysis by Finite Difference Method." In Finite Difference Methods,Theory and Applications, 153–60. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20239-6_14.
Full textda Veiga, Lourenço Beirão, Konstantin Lipnikov, and Gianmarco Manzini. "Analysis of parameters and maximum principles." In The Mimetic Finite Difference Method for Elliptic Problems, 311–37. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02663-3_11.
Full textCsomós, Petra, István Faragó, and Imre Fekete. "Operator Semigroups for Convergence Analysis." In Finite Difference Methods,Theory and Applications, 38–49. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20239-6_4.
Full textPatel, Kuldip Singh, and Mani Mehra. "High-Order Compact Finite Difference Method for Black–Scholes PDE." In Mathematical Analysis and its Applications, 393–403. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2485-3_32.
Full textKachalov, Vasiliy I. "Analytic Theory of Singular Perturbations and Lomov’s Regularization Method." In Finite Difference Methods. Theory and Applications, 305–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11539-5_34.
Full textCompany, Rafael, Vera N. Egorova, Mohamed El Fakharany, Lucas Jódar, and Fazlollah Soleymani. "Numerical Analysis of Novel Finite Difference Methods." In Novel Methods in Computational Finance, 171–214. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61282-9_10.
Full textKhawaja, Hassan A. "Solution of Pure Scattering Radiation Transport Equation (RTE) Using Finite Difference Method (FDM)." In Image Analysis, 492–501. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59126-1_41.
Full textAchdou, Yves. "Finite Difference Methods for Mean Field Games." In Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications, 1–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36433-4_1.
Full textZhao, Z. "A Modified Finite Difference Method to Shape Design Sensitivity Analysis." In Boundary Elements XIII, 755–65. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3696-9_60.
Full textConference papers on the topic "Finite difference method of analysis"
Ashyralyev, Allaberen, Deniz Ağirseven, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Finite Difference Method for Delay Parabolic Equations." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636795.
Full textAshyralyev, Allaberen, Mehmet Emin San, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Finite Difference Method for Stochastic Parabolic Equations." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636799.
Full textBeilina, L., Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Hybrid Discontinuous Finite Element∕Finite Difference Method for Maxwell’s Equations." In ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010. AIP, 2010. http://dx.doi.org/10.1063/1.3498465.
Full textBarkhudaryan, Rafayel. "Finite difference method for two-phase obstacle problem." In 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013: ICNAAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4825987.
Full textIbrahimov, Vagif, and Aliyeva Vusala. "The construction of the finite-difference method and application." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4913104.
Full textAbdollahi, Vahid, and Amir Nejat. "Compressible Fluid Flow Simulation Using Finite Difference Lattice Boltzmann Method." In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24081.
Full textTosa, V., Katalin Kovacs, P. Mercea, and O. Piringer. "A Finite Difference Method for Modeling Migration of Impurities in Multilayer Systems." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2991052.
Full textFeng, Qinghua, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "A Class of Parallel Finite Difference Method for Convection-Diffusion Equations." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241422.
Full textBao, Wendi, Yongzhong Song, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "A Local RBF-generated Finite Difference Method for Partial Differential Algebraic Equations." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636968.
Full textCook, Chase, Zeyu Sun, Taeyoung Kim, and Sheldon X. D. Tan. "Finite difference method for electromigration analysis of multi-branch interconnects." In 2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD). IEEE, 2016. http://dx.doi.org/10.1109/smacd.2016.7520752.
Full textReports on the topic "Finite difference method of analysis"
Huff, K. D., and T. H. Bauer. Benchmarking a new closed-form thermal analysis technique against a traditional lumped parameter, finite-difference method. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1049041.
Full textManzini, Gianmarco. The Mimetic Finite Difference Method. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1078363.
Full textMughabghab, S., A. Azarm, and D. Stock. Macroscopic traffic modeling with the finite difference method. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/226027.
Full textChen, Guo, Zhilin Li, and Ping Lin. A Fast Finite Difference Method for Biharmonic Equations on Irregular Domains. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada444064.
Full textMei, Kenneth K. Conformal Time Domain Finite Difference Method of Solving Electromagnetic Wave Scattering. Fort Belvoir, VA: Defense Technical Information Center, October 1988. http://dx.doi.org/10.21236/ada200921.
Full textMeagher, Timothy. A New Finite Difference Time Domain Method to Solve Maxwell's Equations. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6273.
Full textNaranjo, Sebastian, and Vitaliy Gyrya. A Low Order Mimetic Finite Difference Method for Resistive Magnetohydrodynamics in 2D. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1473774.
Full textManzini, Gianmarco, Daniil Svyatskiy, Enrico Bertolazzi, and Marco Frego. A non-linear constrained optimization technique for the mimetic finite difference method. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1159216.
Full textLaguna, G. Generating meshes for finite difference analysis using MGED solid models. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/6235719.
Full textShellman, C. H. Use of the Implicit-Finite-Difference Method to Implement the Parabolic Equation Model. Fort Belvoir, VA: Defense Technical Information Center, February 1991. http://dx.doi.org/10.21236/ada237437.
Full text