Academic literature on the topic 'Finite Gaussian mixture model'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Finite Gaussian mixture model.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Finite Gaussian mixture model"

1

Mirra, J., and S. Abdullah. "Bayesian gaussian finite mixture model." Journal of Physics: Conference Series 1725 (January 2021): 012084. http://dx.doi.org/10.1088/1742-6596/1725/1/012084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Di Zio, Marco, Ugo Guarnera, and Orietta Luzi. "Imputation through finite Gaussian mixture models." Computational Statistics & Data Analysis 51, no. 11 (2007): 5305–16. http://dx.doi.org/10.1016/j.csda.2006.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Kevin H., and Lingzhou Xue. "Nonparametric Finite Mixture of Gaussian Graphical Models." Technometrics 60, no. 4 (2018): 511–21. http://dx.doi.org/10.1080/00401706.2017.1408497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Feng, Shan, Wenxian Xie, and Yufeng Nie. "Simultaneous Bayesian Clustering and Model Selection with Mixture of Robust Factor Analyzers." Mathematics 12, no. 7 (2024): 1091. http://dx.doi.org/10.3390/math12071091.

Full text
Abstract:
Finite Gaussian mixture models are powerful tools for modeling distributions of random phenomena and are widely used for clustering tasks. However, their interpretability and efficiency are often degraded by the impact of redundancy and noise, especially on high-dimensional datasets. In this work, we propose a generative graphical model for parsimonious modeling of the Gaussian mixtures and robust unsupervised learning. The model assumes that the data are generated independently and identically from a finite mixture of robust factor analyzers, where the features’ salience is adjusted by an active set of latent factors to allow a violation of the local independence assumption. For the model inference, we propose a structured variational Bayes inference framework to realize simultaneous clustering, model selection and outlier processing. Performance of the proposed algorithm is evaluated by conducting experiments on artificial and real-world datasets. Moreover, an application on the high-dimensional machine learning task of handwritten alphabet recognition is introduced.
APA, Harvard, Vancouver, ISO, and other styles
5

TU, WANGSHU, UTKARSH J. DANG, and SANJEENA SUBEDI. "Change point detection via Gaussian mixture model." Journal of Statistical Research 58, no. 1 (2024): 197–219. http://dx.doi.org/10.3329/jsr.v58i1.75425.

Full text
Abstract:
Change point detection aims to find abrupt changes in time series data. These changes denote substantial modifications to the process; these can be modeled as a change in the distribution (in location, scale, or trend). Traditional changepoint detection methods often rely on a cost function to assess if a change occurred in a series. Here, change point detection is investigated in a mixture-model-based clustering framework and a novel change point detection algorithm is developed using a finite mixture of regressions with concomitant variables. Through the introduction of a label correction mechanism, the unstructured clustering-based labels are treated as ordered and distinct segment labels. This approach can detect change points in both univariate and multivariate time series, and different kinds of change can be captured using a parsimonious family of models. Performance is illustrated on both simulated and real data. Journal of Statistical Research 2024, Vol. 58, No. 1, pp. 197-219.
APA, Harvard, Vancouver, ISO, and other styles
6

Poreddy, Rajasekharreddy, and Gopi E. S. "Data-driven Approximation of Cumulative Distribution Function Using Particle Swarm Optimization based Finite Mixtures of Logistic Distribution." International Journal of Intelligent Systems and Applications 16, no. 5 (2024): 10–21. http://dx.doi.org/10.5815/ijisa.2024.05.02.

Full text
Abstract:
This paper proposes a data-driven approximation of the Cumulative Distribution Function using the Finite Mixtures of the Cumulative Distribution Function of Logistic distribution. Since it is not possible to solve the logistic mixture model using the Maximum likelihood method, the mixture model is modeled to approximate the empirical cumulative distribution function using the computational intelligence algorithms. The Probability Density Function is obtained by differentiating the estimate of the Cumulative Distribution Function. The proposed technique estimates the Cumulative Distribution Function of different benchmark distributions. Also, the performance of the proposed technique is compared with the state-of-the-art kernel density estimator and the Gaussian Mixture Model. Experimental results on κ−μ distribution show that the proposed technique performs equally well in estimating the probability density function. In contrast, the proposed technique outperforms in estimating the cumulative distribution function. Also, it is evident from the experimental results that the proposed technique outperforms the state-of-the-art Gaussian Mixture model and kernel density estimation techniques with less training data.
APA, Harvard, Vancouver, ISO, and other styles
7

Shimizu, Taciana, Francisco Louzada, and Adriano Suzuki. "Finite mixture of compositional regression with gaussian errors." Revista Colombiana de Estadística 41, no. 1 (2018): 75–86. http://dx.doi.org/10.15446/rce.v41n1.63152.

Full text
Abstract:
In this paper, we consider to evaluate the efficiency of volleyball players according to the performance of attack, block and serve, but considering the compositional structure of the data related to the fundaments. The finite mixture of regression models better fitted the data in comparison with the usual regression model. The maximum likelihood estimates are obtained via an EM algorithm. A simulation study revels that the estimates are closer to the real values, the estimators are asymptotically unbiased for the parameters. A real Brazilian volleyball dataset related to the efficiency of the players is considered for the analysis.
APA, Harvard, Vancouver, ISO, and other styles
8

He, Zhilin, and Chun-Hsing Ho. "An improved clustering algorithm based on finite Gaussian mixture model." Multimedia Tools and Applications 78, no. 17 (2018): 24285–99. http://dx.doi.org/10.1007/s11042-018-6988-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Helali, Salima, Afif Masmoudi, and Yousri Slaoui. "Semi-Parametric Estimation Using Bernstein Polynomial and a Finite Gaussian Mixture Model." Entropy 24, no. 3 (2022): 315. http://dx.doi.org/10.3390/e24030315.

Full text
Abstract:
The central focus of this paper is upon the alleviation of the boundary problem when the probability density function has a bounded support. Mixtures of beta densities have led to different methods of density estimation for data assumed to have compact support. Among these methods, we mention Bernstein polynomials which leads to an improvement of edge properties for the density function estimator. In this paper, we set forward a shrinkage method using the Bernstein polynomial and a finite Gaussian mixture model to construct a semi-parametric density estimator, which improves the approximation at the edges. Some asymptotic properties of the proposed approach are investigated, such as its probability convergence and its asymptotic normality. In order to evaluate the performance of the proposed estimator, a simulation study and some real data sets were carried out.
APA, Harvard, Vancouver, ISO, and other styles
10

ZHANG, FENG, and ZHUJUN WENG. "MIXTURE PRINCIPAL COMPONENT ANALYSIS MODEL FOR MULTIVARIATE PROCESSES MONITORING." Journal of Advanced Manufacturing Systems 04, no. 02 (2005): 151–66. http://dx.doi.org/10.1142/s0219686705000631.

Full text
Abstract:
A mixture probabilistic principal component analysis model is proposed as a process monitoring tool in this paper. High-dimensional measurement data could be aggregated into some clusters based on the mixture distribution model, where the number of these clusters are automatically determined from the maximum likelihood estimation procedures. It was illustrated that the mixture PCA models conform to the multivariate data well in the experiments involving Gaussian mixtures. The multivariate statistical process monitoring mechanism is then developed first with the learning of a finite mixture model with variant principal component within each cluster, followed by the construction of the statistical process confidence intervals for the identified regions or nodes from T2 charts. For the abnormal input measurement, they would fall out of the acceptance region set by the confidence control limits.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Finite Gaussian mixture model"

1

Malsiner-Walli, Gertraud, Sylvia Frühwirth-Schnatter, and Bettina Grün. "Model-based clustering based on sparse finite Gaussian mixtures." Springer, 2016. http://dx.doi.org/10.1007/s11222-014-9500-2.

Full text
Abstract:
In the framework of Bayesian model-based clustering based on a finite mixture of Gaussian distributions, we present a joint approach to estimate the number of mixture components and identify cluster-relevant variables simultaneously as well as to obtain an identified model. Our approach consists in specifying sparse hierarchical priors on the mixture weights and component means. In a deliberately overfitting mixture model the sparse prior on the weights empties superfluous components during MCMC. A straightforward estimator for the true number of components is given by the most frequent number of non-empty components visited during MCMC sampling. Specifying a shrinkage prior, namely the normal gamma prior, on the component means leads to improved parameter estimates as well as identification of cluster-relevant variables. After estimating the mixture model using MCMC methods based on data augmentation and Gibbs sampling, an identified model is obtained by relabeling the MCMC output in the point process representation of the draws. This is performed using K-centroids cluster analysis based on the Mahalanobis distance. We evaluate our proposed strategy in a simulation setup with artificial data and by applying it to benchmark data sets. (authors' abstract)
APA, Harvard, Vancouver, ISO, and other styles
2

Stewart, Michael Ian. "Asymptotic methods for tests of homogeneity for finite mixture models." Thesis, The University of Sydney, 2002. http://hdl.handle.net/2123/855.

Full text
Abstract:
We present limit theory for tests of homogeneity for finite mixture models. More specifically, we derive the asymptotic distribution of certain random quantities used for testing that a mixture of two distributions is in fact just a single distribution. Our methods apply to cases where the mixture component distributions come from one of a wide class of one-parameter exponential families, both continous and discrete. We consider two random quantities, one related to testing simple hypotheses, the other composite hypotheses. For simple hypotheses we consider the maximum of the standardised score process, which is itself a test statistic. For composite hypotheses we consider the maximum of the efficient score process, which is itself not a statistic (it depends on the unknown true distribution) but is asymptotically equivalent to certain common test statistics in a certain sense. We show that we can approximate both quantities with the maximum of a certain Gaussian process depending on the sample size and the true distribution of the observations, which when suitably normalised has a limiting distribution of the Gumbel extreme value type. Although the limit theory is not practically useful for computing approximate p-values, we use Monte-Carlo simulations to show that another method suggested by the theory, involving using a Studentised version of the maximum-score statistic and simulating a Gaussian process to compute approximate p-values, is remarkably accurate and uses a fraction of the computing resources that a straight Monte-Carlo approximation would.
APA, Harvard, Vancouver, ISO, and other styles
3

Stewart, Michael Ian. "Asymptotic methods for tests of homogeneity for finite mixture models." University of Sydney. Mathematics and Statistics, 2002. http://hdl.handle.net/2123/855.

Full text
Abstract:
We present limit theory for tests of homogeneity for finite mixture models. More specifically, we derive the asymptotic distribution of certain random quantities used for testing that a mixture of two distributions is in fact just a single distribution. Our methods apply to cases where the mixture component distributions come from one of a wide class of one-parameter exponential families, both continous and discrete. We consider two random quantities, one related to testing simple hypotheses, the other composite hypotheses. For simple hypotheses we consider the maximum of the standardised score process, which is itself a test statistic. For composite hypotheses we consider the maximum of the efficient score process, which is itself not a statistic (it depends on the unknown true distribution) but is asymptotically equivalent to certain common test statistics in a certain sense. We show that we can approximate both quantities with the maximum of a certain Gaussian process depending on the sample size and the true distribution of the observations, which when suitably normalised has a limiting distribution of the Gumbel extreme value type. Although the limit theory is not practically useful for computing approximate p-values, we use Monte-Carlo simulations to show that another method suggested by the theory, involving using a Studentised version of the maximum-score statistic and simulating a Gaussian process to compute approximate p-values, is remarkably accurate and uses a fraction of the computing resources that a straight Monte-Carlo approximation would.
APA, Harvard, Vancouver, ISO, and other styles
4

Stewart, Michael. "Asymptotic methods for tests of homogeneity for finite mixture models." Connect to full text, 2002. http://hdl.handle.net/2123/855.

Full text
Abstract:
Thesis (Ph. D.)--University of Sydney, 2002.<br>Title from title screen (viewed Apr. 28, 2008). Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the School of Mathematics and Statistics, Faculty of Science. Includes bibliography. Also available in print form.
APA, Harvard, Vancouver, ISO, and other styles
5

Safont, Armero Gonzalo. "New Insights in Prediction and Dynamic Modeling from Non-Gaussian Mixture Processing Methods." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/53913.

Full text
Abstract:
[EN] This thesis considers new applications of non-Gaussian mixtures in the framework of statistical signal processing and pattern recognition. The non-Gaussian mixtures were implemented by mixtures of independent component analyzers (ICA). The fundamental hypothesis of ICA is that the observed signals can be expressed as a linear transformation of a set of hidden variables, usually referred to as sources, which are statistically independent. This independence allows factoring the original M-dimensional probability density function (PDF) of the data as a product of one-dimensional probability densities, greatly simplifying the modeling of the data. ICA mixture models (ICAMM) provide further flexibility by alleviating the independency requirement of ICA, thus allowing the model to obtain local projections of the data without compromising its generalization capabilities. Here are explored new possibilities of ICAMM for the purposes of estimation and classification of signals. The thesis makes several contributions to the research in non-Gaussian mixtures: (i) a method for maximum-likelihood estimation of missing data, based on the maximization of the PDF of the data given the ICAMM; (ii) a method for Bayesian estimation of missing data that minimizes the mean squared error and can obtain the confidence interval of the prediction; (iii) a generalization of the sequential dependence model for ICAMM to semi-supervised or supervised learning and multiple chains of dependence, thus allowing the use of multimodal data; and (iv) introduction of ICAMM in diverse novel applications, both for estimation and for classification. The developed methods were validated via an extensive number of simulations that covered multiple scenarios. These tested the sensitivity of the proposed methods with respect to the following parameters: number of values to estimate; kinds of source distributions; correspondence of the data with respect to the assumptions of the model; number of classes in the mixture model; and unsupervised, semi-supervised, and supervised learning. The performance of the proposed methods was evaluated using several figures of merit, and compared with the performance of multiple classical and state-of-the-art techniques for estimation and classification. Aside from the simulations, the methods were also tested on several sets of real data from different types: data from seismic exploration studies; ground penetrating radar surveys; and biomedical data. These data correspond to the following applications: reconstruction of damaged or missing data from ground-penetrating radar surveys of historical walls; reconstruction of damaged or missing data from a seismic exploration survey; reconstruction of artifacted or missing electroencephalographic (EEG) data; diagnosis of sleep disorders; modeling of the brain response during memory tasks; and exploration of EEG data from subjects performing a battery of neuropsychological tests. The obtained results demonstrate the capability of the proposed methods to work on problems with real data. Furthermore, the proposed methods are general-purpose and can be used in many signal processing fields.<br>[ES] Esta tesis considera nuevas aplicaciones de las mezclas no Gaussianas dentro del marco de trabajo del procesado estadístico de señal y del reconocimiento de patrones. Las mezclas no Gaussianas fueron implementadas mediante mezclas de analizadores de componentes independientes (ICA). La hipótesis fundamental de ICA es que las señales observadas pueden expresarse como una transformación lineal de un grupo de variables ocultas, normalmente llamadas fuentes, que son estadísticamente independientes. Esta independencia permite factorizar la función de densidad de probabilidad (PDF) original M-dimensional de los datos como un producto de densidades unidimensionales, simplificando ampliamente el modelado de los datos. Los modelos de mezclas ICA (ICAMM) aportan una mayor flexibilidad al relajar el requisito de independencia de ICA, permitiendo que el modelo obtenga proyecciones locales de los datos sin comprometer su capacidad de generalización. Aquí se exploran nuevas posibilidades de ICAMM para los propósitos de estimación y clasificación de señales. La tesis realiza varias contribuciones a la investigación en mezclas no Gaussianas: (i) un método de estimación de datos faltantes por máxima verosimilitud, basado en la maximización de la PDF de los datos dado el ICAMM; (ii) un método de estimación Bayesiana de datos faltantes que minimiza el error cuadrático medio y puede obtener el intervalo de confianza de la predicción; (iii) una generalización del modelo de dependencia secuencial de ICAMM para aprendizaje supervisado o semi-supervisado y múltiples cadenas de dependencia, permitiendo así el uso de datos multimodales; y (iv) introducción de ICAMM en varias aplicaciones novedosas, tanto para estimación como para clasificación. Los métodos desarrollados fueron validados mediante un número extenso de simulaciones que cubrieron múltiples escenarios. Éstos comprobaron la sensibilidad de los métodos propuestos con respecto a los siguientes parámetros: número de valores a estimar; tipo de distribuciones de las fuentes; correspondencia de los datos con respecto a las suposiciones del modelo; número de clases en el modelo de mezclas; y aprendizaje supervisado, semi-supervisado y no supervisado. El rendimiento de los métodos propuestos fue evaluado usando varias figuras de mérito, y comparado con el rendimiento de múltiples técnicas clásicas y del estado del arte para estimación y clasificación. Además de las simulaciones, los métodos también fueron probados sobre varios grupos de datos de diferente tipo: datos de estudios de exploración sísmica; exploraciones por radar de penetración terrestre; y datos biomédicos. Estos datos corresponden a las siguientes aplicaciones: reconstrucción de datos dañados o faltantes de exploraciones de radar de penetración terrestre de muros históricos; reconstrucción de datos dañados o faltantes de un estudio de exploración sísmica; reconstrucción de datos electroencefalográficos (EEG) dañados o artefactados; diagnóstico de desórdenes del sueño; modelado de la respuesta del cerebro durante tareas de memoria; y exploración de datos EEG de sujetos durante la realización de una batería de pruebas neuropsicológicas. Los resultados obtenidos demuestran la capacidad de los métodos propuestos para trabajar en problemas con datos reales. Además, los métodos propuestos son de propósito general y pueden utilizarse en muchos campos del procesado de señal.<br>[CAT] Aquesta tesi considera noves aplicacions de barreges no Gaussianes dins del marc de treball del processament estadístic de senyal i del reconeixement de patrons. Les barreges no Gaussianes van ser implementades mitjançant barreges d'analitzadors de components independents (ICA). La hipòtesi fonamental d'ICA és que els senyals observats poden ser expressats com una transformació lineal d'un grup de variables ocultes, comunament anomenades fonts, que són estadísticament independents. Aquesta independència permet factoritzar la funció de densitat de probabilitat (PDF) original M-dimensional de les dades com un producte de densitats de probabilitat unidimensionals, simplificant àmpliament la modelització de les dades. Els models de barreges ICA (ICAMM) aporten una major flexibilitat en alleugerar el requeriment d'independència d'ICA, permetent així que el model obtinga projeccions locals de les dades sense comprometre la seva capacitat de generalització. Ací s'exploren noves possibilitats d'ICAMM pels propòsits d'estimació i classificació de senyals. Aquesta tesi aporta diverses contribucions a la recerca en barreges no Gaussianes: (i) un mètode d'estimació de dades faltants per màxima versemblança, basat en la maximització de la PDF de les dades donat l'ICAMM; (ii) un mètode d'estimació Bayesiana de dades faltants que minimitza l'error quadràtic mitjà i pot obtenir l'interval de confiança de la predicció; (iii) una generalització del model de dependència seqüencial d'ICAMM per entrenament supervisat o semi-supervisat i múltiples cadenes de dependència, permetent així l'ús de dades multimodals; i (iv) introducció d'ICAMM en diverses noves aplicacions, tant per a estimació com per a classificació. Els mètodes desenvolupats van ser validats mitjançant una extensa quantitat de simulacions que cobriren múltiples situacions. Aquestes van verificar la sensibilitat dels mètodes proposats amb respecte als següents paràmetres: nombre de valors per estimar; mena de distribucions de les fonts; correspondència de les dades amb respecte a les suposicions del model; nombre de classes del model de barreges; i aprenentatge supervisat, semi-supervisat i no-supervisat. El rendiment dels mètodes proposats va ser avaluat mitjançant diverses figures de mèrit, i comparat amb el rendiments de múltiples tècniques clàssiques i de l'estat de l'art per a estimació i classificació. A banda de les simulacions, els mètodes van ser verificats també sobre diversos grups de dades reals de diferents tipus: dades d'estudis d'exploració sísmica; exploracions de radars de penetració de terra; i dades biomèdiques. Aquestes dades corresponen a les següents aplicacions: reconstrucció de dades danyades o faltants d'estudis d'exploracions de radar de penetració de terra sobre murs històrics; reconstrucció de dades danyades o faltants en un estudi d'exploració sísmica; reconstrucció de dades electroencefalogràfiques (EEG) artefactuades o faltants; diagnosi de desordres de la son; modelització de la resposta del cervell durant tasques de memòria; i exploració de dades EEG de subjectes realitzant una bateria de tests neuropsicològics. Els resultats obtinguts han demostrat la capacitat dels mètodes proposats per treballar en problemes amb dades reals. A més, els mètodes proposats són de propòsit general i poden fer-se servir en molts camps del processament de senyal.<br>Safont Armero, G. (2015). New Insights in Prediction and Dynamic Modeling from Non-Gaussian Mixture Processing Methods [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/53913<br>TESIS
APA, Harvard, Vancouver, ISO, and other styles
6

Gabriel, Naveen. "Automatic Speech Recognition in Somali." Thesis, Linköpings universitet, Statistik och maskininlärning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166216.

Full text
Abstract:
The field of speech recognition during the last decade has left the research stage and found its way into the public market, and today, speech recognition software is ubiquitous around us. An automatic speech recognizer understands human speech and represents it as text. Most of the current speech recognition software employs variants of deep neural networks. Before the deep learning era, the hybrid of hidden Markov model and Gaussian mixture model (HMM-GMM) was a popular statistical model to solve speech recognition. In this thesis, automatic speech recognition using HMM-GMM was trained on Somali data which consisted of voice recording and its transcription. HMM-GMM is a hybrid system in which the framework is composed of an acoustic model and a language model. The acoustic model represents the time-variant aspect of the speech signal, and the language model determines how probable is the observed sequence of words. This thesis begins with background about speech recognition. Literature survey covers some of the work that has been done in this field. This thesis evaluates how different language models and discounting methods affect the performance of speech recognition systems. Also, log scores were calculated for the top 5 predicted sentences and confidence measures of pre-dicted sentences. The model was trained on 4.5 hrs of voiced data and its corresponding transcription. It was evaluated on 3 mins of testing data. The performance of the trained model on the test set was good, given that the data was devoid of any background noise and lack of variability. The performance of the model is measured using word error rate(WER) and sentence error rate (SER). The performance of the implemented model is also compared with the results of other research work. This thesis also discusses why log and confidence score of the sentence might not be a good way to measure the performance of the resulting model. It also discusses the shortcoming of the HMM-GMM model, how the existing model can be improved, and different alternatives to solve the problem.
APA, Harvard, Vancouver, ISO, and other styles
7

Lan, Jing. "Gaussian mixture model based system identification and control." [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0014640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Georgescu, Vera. "Classification de données multivariées multitypes basée sur des modèles de mélange : application à l'étude d'assemblages d'espèces en écologie." Phd thesis, Université d'Avignon, 2010. http://tel.archives-ouvertes.fr/tel-00624382.

Full text
Abstract:
En écologie des populations, les distributions spatiales d'espèces sont étudiées afin d'inférer l'existence de processus sous-jacents, tels que les interactions intra- et interspécifiques et les réponses des espèces à l'hétérogénéité de l'environnement. Nous proposons d'analyser les données spatiales multi-spécifiques sous l'angle des assemblages d'espèces, que nous considérons en termes d'abondances absolues et non de diversité des espèces. Les assemblages d'espèces sont une des signatures des interactions spatiales locales des espèces entre elles et avec leur environnement. L'étude des assemblages d'espèces peut permettre de détecter plusieurs types d'équilibres spatialisés et de les associer à l'effet de variables environnementales. Les assemblages d'espèces sont définis ici par classification non spatiale des observations multivariées d'abondances d'espèces. Les méthodes de classification basées sur les modèles de mélange ont été choisies afin d'avoir une mesure de l'incertitude de la classification et de modéliser un assemblage par une loi de probabilité multivariée. Dans ce cadre, nous proposons : 1. une méthode d'analyse exploratoire de données spatiales multivariées d'abondances d'espèces, qui permet de détecter des assemblages d'espèces par classification, de les cartographier et d'analyser leur structure spatiale. Des lois usuelles, telle que la Gaussienne multivariée, sont utilisées pour modéliser les assemblages, 2. un modèle hiérarchique pour les assemblages d'abondances lorsque les lois usuelles ne suffisent pas. Ce modèle peut facilement s'adapter à des données contenant des variables de types différents, qui sont fréquemment rencontrées en écologie, 3. une méthode de classification de données contenant des variables de types différents basée sur des mélanges de lois à structure hiérarchique (définies en 2.). Deux applications en écologie ont guidé et illustré ce travail : l'étude à petite échelle des assemblages de deux espèces de pucerons sur des feuilles de clémentinier et l'étude à large échelle des assemblages d'une plante hôte, le plantain lancéolé, et de son pathogène, l'oïdium, sur les îles Aland en Finlande
APA, Harvard, Vancouver, ISO, and other styles
9

Vakil, Sam. "Gaussian mixture model based coding of speech and audio." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81575.

Full text
Abstract:
The transmission of speech and audio over communication channels has always required speech and audio coders with reasonable search and computational complexity and good performance relative to the corresponding distortion measure.<br>This work introduces a coding scheme which works in a perceptual auditory domain. The input high dimensional frames of audio and speech are transformed to power spectral domain, using either DFT or MDCT. The log spectral vectors are then transformed to the excitation domain. In the quantizer section the vectors are DCT transformed and decorrelated. This operation gives the possibility of using diagonal covariances in modelling the data. Finally, a GMM based VQ is performed on the vectors.<br>In the decoder part the inverse operations are done. However, in order to prevent negative power spectrum elements due to inverse perceptual transformation in the decoder, instead of direct inversion, a Nonnegative Least Squares Algorithm has been used to switch back to frequency domain. For the sake of comparison, a reference subband based "Excitation Distortion coder" is implemented and comparing the resulting coded files showed a better performance for the proposed GMM based coder.
APA, Harvard, Vancouver, ISO, and other styles
10

Sadarangani, Nikhil 1979. "An improved Gaussian mixture model algorithm for background subtraction." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/87293.

Full text
Abstract:
Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.<br>Includes bibliographical references (leaves 71-72).<br>by Nikhil Sadarangani.<br>M.Eng.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Finite Gaussian mixture model"

1

Nowman, K. B. Finite sample properties of the Gaussian estimation of an open higher order continuous time dynamic model with mixed stock and flow data. University of Essex, Dept. of Economics, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cheng, Russell. Finite Mixture Examples; MAPIS Details. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198505044.003.0018.

Full text
Abstract:
Two detailed numerical examples are given in this chapter illustrating and comparing mainly the reversible jump Markov chain Monte Carlo (RJMCMC) and the maximum a posteriori/importance sampling (MAPIS) methods. The numerical examples are the well-known galaxy data set with sample size 82, and the Hidalgo stamp issues thickness data with sample size 485. A comparison is made of the estimates obtained by the RJMCMC and MAPIS methods for (i) the posterior k-distribution of the number of components, k, (ii) the predictive finite mixture distribution itself, and (iii) the posterior distributions of the component parameters and weights. The estimates obtained by MAPIS are shown to be more satisfactory and meaningful. Details are given of the practical implementation of MAPIS for five non-normal mixture models, namely: the extreme value, gamma, inverse Gaussian, lognormal, and Weibull. Mathematical details are also given of the acceptance-rejection importance sampling used in MAPIS.
APA, Harvard, Vancouver, ISO, and other styles
3

Cheng, Russell. Finite Mixture Models. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198505044.003.0017.

Full text
Abstract:
Fitting a finite mixture model when the number of components, k, is unknown can be carried out using the maximum likelihood (ML) method though it is non-standard. Two well-known Bayesian Markov chain Monte Carlo (MCMC) methods are reviewed and compared with ML: the reversible jump method and one using an approximating Dirichlet process. Another Bayesian method, to be called MAPIS, is examined that first obtains point estimates for the component parameters by the maximum a posteriori method for different k and then estimates posterior distributions, including that for k, using importance sampling. MAPIS is compared with ML and the MCMC methods. The MCMC methods produce multimodal posterior parameter distributions in overfitted models. This results in the posterior distribution of k being biased towards high k. It is shown that MAPIS does not suffer from this problem. A simple numerical example is discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Anomaly Detection Using a Variational Autoencoder Neural Network with a Novel Objective Function and Gaussian Mixture Model Selection Technique. Independently Published, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cumming, Jonathan A., and Michael Goldstein. Bayesian analysis and decisions in nuclear power plant maintenance. Edited by Anthony O'Hagan and Mike West. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198703174.013.9.

Full text
Abstract:
This article discusses the results of a study in Bayesian analysis and decision making in the maintenance and reliability of nuclear power plants. It demonstrates the use of Bayesian parametric and semiparametric methodology to analyse the failure times of components that belong to an auxiliary feedwater system in a nuclear power plant at the South Texas Project (STP) Electric Generation Station. The parametric models produce estimates of the hazard functions that are compared to the output from a mixture of Polya trees model. The statistical output is used as the most critical input in a stochastic optimization model which finds the optimal replacement time for a system that randomly fails over a finite horizon. The article first introduces the model for maintenance and reliability analysis before presenting the optimization results. It also examines the nuclear power plant data to be used in the Bayesian models.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Finite Gaussian mixture model"

1

Di Zio, Marco, and Ugo Guarnera. "On Multiple Imputation Through Finite Gaussian Mixture Models." In Data Analysis, Machine Learning and Applications. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78246-9_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Jiahua. "em-Test for Univariate Finite Gaussian Mixture Models." In ICSA Book Series in Statistics. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6141-2_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Greggio, Nicola, Alexandre Bernardino, and José Santos-Victor. "Unsupervised Learning of Finite Gaussian Mixture Models (GMMs): A Greedy Approach." In Informatics in Control, Automation and Robotics. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19539-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sarang, Poornachandra. "Gaussian Mixture Model." In Thinking Data Science. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-02363-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brank, Janez, Dunja Mladenić, Marko Grobelnik, et al. "Finite Mixture Model." In Encyclopedia of Machine Learning. Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Scrucca, Luca, Chris Fraley, T. Brendan Murphy, and Adrian E. Raftery. "Visualizing Gaussian Mixture Models." In Model-Based Clustering, Classification, and Density Estimation Using mclust in R. Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003277965-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Scrucca, Luca, Chris Fraley, T. Brendan Murphy, and Adrian E. Raftery. "Finite Mixture Models." In Model-Based Clustering, Classification, and Density Estimation Using mclust in R. Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003277965-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Jingdong, Jianguo Lee, and Changshui Zhang. "Kernel Trick Embedded Gaussian Mixture Model." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39624-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Azam, Muhammad, Basim Alghabashi, and Nizar Bouguila. "Multivariate Bounded Asymmetric Gaussian Mixture Model." In Unsupervised and Semi-Supervised Learning. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23876-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ahn, Sung Mahn, and Sung Baik. "Minimal RBF Networks by Gaussian Mixture Model." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11538059_95.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Finite Gaussian mixture model"

1

Lucas, Alexandre, Salvador Carvalhosa, and Sara Golmaryami. "Gaussian Mixture Model for Battery Operation Anomaly Detection." In 2024 International Conference on Smart Energy Systems and Technologies (SEST). IEEE, 2024. http://dx.doi.org/10.1109/sest61601.2024.10694471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Orellana, Rafael, Rodrigo Carvajal, and Juan C. Aguero. "Empirical Bayes estimation utilizing finite Gaussian Mixture Models." In 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON). IEEE, 2019. http://dx.doi.org/10.1109/chilecon47746.2019.8987584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Amudala, Srikanth, Samr Ali, Fatma Najar, and Nizar Bouguila. "Variational Inference of Finite Generalized Gaussian Mixture Models." In 2019 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2019. http://dx.doi.org/10.1109/ssci44817.2019.9002852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Song, Ziyang, Ornela Bregu, Samr Ali, and Nizar Bouguila. "Variational Inference of Finite Asymmetric Gaussian Mixture Models." In 2019 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2019. http://dx.doi.org/10.1109/ssci44817.2019.9002954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mei Chen, Yan Liu, and Mingguang Zhuang. "High dimension finite mixture Gaussian model estimation for short time Fourier decomposition by EM-algorithm." In 2008 International Conference on Information and Automation (ICIA). IEEE, 2008. http://dx.doi.org/10.1109/icinfa.2008.4608086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Qingsheng, and Gaohuan Liu. "Using Tasseled Cap Transformation and Finite Gaussian Mixture Model to Classify Landsat TM Imagery Data." In 2009 Fifth International Conference on Natural Computation. IEEE, 2009. http://dx.doi.org/10.1109/icnc.2009.67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mukherjee, Arpan, Rahul Rai, Puneet Singla, Tarunraj Singh, and Abani Patra. "An Adaptive Gaussian Mixture Model Approach Based Framework for Solving Fokker-Planck Kolmogorov Equation Related to High Dimensional Dynamical Systems." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60312.

Full text
Abstract:
Engineering systems are often modeled as a large dimensional random process with additive noise. The analysis of such system involves a solution to simultaneous system of Stochastic Differential Equations (SDE). The exact solution to the SDE is given by the evolution of the probability density function (pdf) of the state vector through the application of Stochastic Calculus. The Fokker-Planck-Kolmogorov Equation (FPKE) provides approximate solution to the SDE by giving the time evolution equation for the non-Gaussian pdf of the state vector. In this paper, we outline a computational framework that combines linearization, clustering technique and the Adaptive Gaussian Mixture Model (AGMM) methodology for solving the Fokker-Planck-Kolmogorov Equation (FPKE) related to a high dimensional system. The linearization and clustering technique facilitate easier decomposition of the overall high dimensional FPKE system into a finite number of much lower dimension FPKE systems. The decomposition enables the solution method to be faster. Numerical simulations test the efficacy of our developed framework.
APA, Harvard, Vancouver, ISO, and other styles
8

Garcia, Vincent, Frank Nielsen, and Richard Nock. "Hierarchical Gaussian mixture model." In 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2010. http://dx.doi.org/10.1109/icassp.2010.5495750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gong, Dayong, and Zhihua Wang. "An improved Gaussian mixture model." In 2012 International Conference on Graphic and Image Processing, edited by Zeng Zhu. SPIE, 2013. http://dx.doi.org/10.1117/12.2010876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Janouek, Jan, Petr Gajdo, Michal Radecky, and Vaclav Snael. "Gaussian Mixture Model Cluster Forest." In 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA). IEEE, 2015. http://dx.doi.org/10.1109/icmla.2015.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Finite Gaussian mixture model"

1

Ramakrishnan, Aravind, Ashraf Alrajhi, Egemen Okte, Hasan Ozer, and Imad Al-Qadi. Truck-Platooning Impacts on Flexible Pavements: Experimental and Mechanistic Approaches. Illinois Center for Transportation, 2021. http://dx.doi.org/10.36501/0197-9191/21-038.

Full text
Abstract:
Truck platoons are expected to improve safety and reduce fuel consumption. However, their use is projected to accelerate pavement damage due to channelized-load application (lack of wander) and potentially reduced duration between truck-loading applications (reduced rest period). The effect of wander on pavement damage is well documented, while relatively few studies are available on the effect of rest period on pavement permanent deformation. Therefore, the main objective of this study was to quantify the impact of rest period theoretically, using a numerical method, and experimentally, using laboratory testing. A 3-D finite-element (FE) pavement model was developed and run to quantify the effect of rest period. Strain recovery and accumulation were predicted by fitting Gaussian mixture models to the strain values computed from the FE model. The effect of rest period was found to be insignificant for truck spacing greater than 10 ft. An experimental program was conducted, and several asphalt concrete (AC) mixes were considered at various stress levels, temperatures, and rest periods. Test results showed that AC deformation increased with rest period, irrespective of AC-mix type, stress level, and/or temperature. This observation was attributed to a well-documented hardening–relaxation mechanism, which occurs during AC plastic deformation. Hence, experimental and FE-model results are conflicting due to modeling AC as a viscoelastic and the difference in the loading mechanism. A shift model was developed by extending the time–temperature superposition concept to incorporate rest period, using the experimental data. The shift factors were used to compute the equivalent number of cycles for various platoon scenarios (truck spacings or rest period). The shift model was implemented in AASHTOware pavement mechanic–empirical design (PMED) guidelines for the calculation of rutting using equivalent number of cycles.
APA, Harvard, Vancouver, ISO, and other styles
2

Gardiner, Thomas, and Allen Robinson. Gaussian Mixture Model Solvers for the Boltzmann Equation. Office of Scientific and Technical Information (OSTI), 2022. http://dx.doi.org/10.2172/2402991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

De Leon, Phillip L., and Richard D. McClanahan. Efficient speaker verification using Gaussian mixture model component clustering. Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1039402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!