Academic literature on the topic 'Finite groups'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Finite groups.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Finite groups"

1

A. Jund, Asaad, and Haval M. Mohammed Salih. "Result Involution Graphs of Finite Groups." Journal of Zankoy Sulaimani - Part A 23, no. 1 (June 20, 2021): 113–18. http://dx.doi.org/10.17656/jzs.10846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Jinshan, Zhencai Shen, and Jiangtao Shi. "Finite groups with few vanishing elements." Glasnik Matematicki 49, no. 1 (June 8, 2014): 83–103. http://dx.doi.org/10.3336/gm.49.1.07.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kondrat'ev, A. S., A. A. Makhnev, and A. I. Starostin. "Finite groups." Journal of Soviet Mathematics 44, no. 3 (February 1989): 237–318. http://dx.doi.org/10.1007/bf01676868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Andruskiewitsch, N., and G. A. García. "Extensions of Finite Quantum Groups by Finite Groups." Transformation Groups 14, no. 1 (November 18, 2008): 1–27. http://dx.doi.org/10.1007/s00031-008-9039-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Conrad, Paul F., and Jorge Martinez. "Locally finite conditions on lattice-ordered groups." Czechoslovak Mathematical Journal 39, no. 3 (1989): 432–44. http://dx.doi.org/10.21136/cmj.1989.102314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Yuanqian, Paul Conrad, and Michael Darnel. "Finite-valued subgroups of lattice-ordered groups." Czechoslovak Mathematical Journal 46, no. 3 (1996): 501–12. http://dx.doi.org/10.21136/cmj.1996.127311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kniahina, V. N., and V. S. Monakhov. "Finite groups with semi-subnormal Schmidt subgroups." Algebra and Discrete Mathematics 29, no. 1 (2020): 66–73. http://dx.doi.org/10.12958/adm1376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cao, Jian Ji, and Xiu Yun Guo. "Finite NPDM-groups." Acta Mathematica Sinica, English Series 37, no. 2 (February 2021): 306–14. http://dx.doi.org/10.1007/s10114-021-8047-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Burn, R. P., L. C. Grove, and C. T. Benson. "Finite Reflection Groups." Mathematical Gazette 70, no. 451 (March 1986): 77. http://dx.doi.org/10.2307/3615867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stonehewer, S. E. "FINITE SOLUBLE GROUPS." Bulletin of the London Mathematical Society 25, no. 5 (September 1993): 505–6. http://dx.doi.org/10.1112/blms/25.5.505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Finite groups"

1

Mkiva, Soga Loyiso Tiyo. "The non-cancellation groups of certain groups which are split extensions of a finite abelian group by a finite rank free abelian group." Thesis, University of the Western Cape, 2008. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_8520_1262644840.

Full text
Abstract:
<p>&nbsp<br></p> <p align="left">The groups we consider in this study belong to the class <font face="F30">X</font><font face="F25" size="1"><font face="F25" size="1">0 </font></font><font face="F15">of all finitely generated groups with finite commutator subgroups.</font></p>
APA, Harvard, Vancouver, ISO, and other styles
2

Marion, Claude Miguel Emmanuel. "Triangle groups and finite simple groups." Thesis, Imperial College London, 2009. http://hdl.handle.net/10044/1/4371.

Full text
Abstract:
This thesis contains a study of the spaces of homomorphisms from hyperbolic triangle groups to finite groups of Lie type which leads to a number of deterministic, asymptotic,and probabilistic results on the (p1, p2, p3)-generation problem for finite groups of Lie type. Let G₀ = L(pn) be a finite simple group of Lie type over the finite field Fpn and let T = Tp1,p2,p3 be the hyperbolic triangle group (x,y : xp1 = yp2 = (xy)p3 = 1) where p1, p2, p3 are prime numbers satisfying the hyperbolic condition 1/p1 + 1/p2 + 1/p3 < 1. In general, the size of Hom(T,G₀) is a polynomial in q, where q = pn, w
APA, Harvard, Vancouver, ISO, and other styles
3

George, Timothy Edward. "Symmetric representation of elements of finite groups." CSUSB ScholarWorks, 2006. https://scholarworks.lib.csusb.edu/etd-project/3105.

Full text
Abstract:
The purpose of the thesis is to give an alternative and more efficient method for working with finite groups by constructing finite groups as homomorphic images of progenitors. The method introduced can be applied to all finite groups that possess symmetric generating sets of involutions. Such groups include all finite non-abelian simple groups, which can then be constructed by the technique of manual double coset enumeration.
APA, Harvard, Vancouver, ISO, and other styles
4

Wegner, Alexander. "The construction of finite soluble factor groups of finitely presented groups and its application." Thesis, University of St Andrews, 1992. http://hdl.handle.net/10023/12600.

Full text
Abstract:
Computational group theory deals with the design, analysis and computer implementation of algorithms for solving computational problems involving groups, and with the applications of the programs produced to interesting questions in group theory, in other branches of mathematics, and in other areas of science. This thesis describes an implementation of a proposal for a Soluble Quotient Algorithm, i.e. a description of the algorithms used and a report on the findings of an empirical study of the behaviour of the programs, and gives an account of an application of the programs. The programs were
APA, Harvard, Vancouver, ISO, and other styles
5

Bujard, Cédric. "Finite subgroups of the extended Morava stabilizer groups." Thesis, Strasbourg, 2012. http://www.theses.fr/2012STRAD010/document.

Full text
Abstract:
L'objet de la thèse est la classification à conjugaison près des sous-groupes finis du groupe de stabilisateur (classique) de Morava S_n et du groupe de stabilisateur étendu G_n(u) associé à une loi de groupe formel F de hauteur n définie sur le corps F_p à p éléments. Une classification complète dans S_n est établie pour tout entier positif n et premier p. De plus, on montre que la classification dans le groupe étendu dépend aussi de F et son unité associée u dans l'anneau des entiers p-adiques. On établit un cadre théorique pour la classification dans G_n(u), on donne des conditions nécessai
APA, Harvard, Vancouver, ISO, and other styles
6

McDougall-Bagnall, Jonathan M. "Generation problems for finite groups." Thesis, University of St Andrews, 2011. http://hdl.handle.net/10023/2529.

Full text
Abstract:
It can be deduced from the Burnside Basis Theorem that if G is a finite p-group with d(G)=r then given any generating set A for G there exists a subset of A of size r that generates G. We have denoted this property B. A group is said to have the basis property if all subgroups have property B. This thesis is a study into the nature of these two properties. Note all groups are finite unless stated otherwise. We begin this thesis by providing examples of groups with and without property B and several results on the structure of groups with property B, showing that under certain conditions proper
APA, Harvard, Vancouver, ISO, and other styles
7

Menezes, Nina E. "Random generation and chief length of finite groups." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3578.

Full text
Abstract:
Part I of this thesis studies P[subscript(G)](d), the probability of generating a nonabelian simple group G with d randomly chosen elements, and extends this idea to consider the conditional probability P[subscript(G,Soc(G))](d), the probability of generating an almost simple group G by d randomly chosen elements, given that they project onto a generating set of G/Soc(G). In particular we show that for a 2-generated almost simple group, P[subscript(G,Soc(G))](2) 53≥90, with equality if and only if G = A₆ or S₆. Furthermore P[subscript(G,Soc(G))](2) 9≥10 except for 30 almost simple groups G, an
APA, Harvard, Vancouver, ISO, and other styles
8

JÃnior, Raimundo de AraÃjo Bastos. "Commutators in finite groups." Universidade Federal do CearÃ, 2010. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5496.

Full text
Abstract:
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico<br>Os problemas que abordaremos estÃo diretamente associados à existÃncia de elementos no subgrupo derivado que nÃo sÃo comutadores. Nosso objetivo serà apresentar os resultados de Tim Bonner, que sÃo estimativas para a razÃo entre o comprimento do derivado e a ordem do grupo (limitaÃÃo superior e determinaÃÃo do "comportamento assintÃtico"), culminando com uma prova da conjectura de Bardakov.<br>The problems which we address in this work are directly related to the existence of elements in the derived subgroup that are not commutat
APA, Harvard, Vancouver, ISO, and other styles
9

Stavis, Andreas. "Representations of finite groups." Thesis, Karlstads universitet, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-69642.

Full text
Abstract:
Representation theory is concerned with the ways of writing elements of abstract algebraic structures as linear transformations of vector spaces. Typical structures amenable to representation theory are groups, associative algebras and Lie algebras. In this thesis we study linear representations of finite groups. The study focuses on character theory and how character theory can be used to extract information from a group. Prior to that, concepts needed to treat character theory, and some of their ramifications, are investigated. The study is based on existing literature, with excessive use of
APA, Harvard, Vancouver, ISO, and other styles
10

Torres, Bisquertt María de la Luz. "Symmetric generation of finite groups." CSUSB ScholarWorks, 2005. https://scholarworks.lib.csusb.edu/etd-project/2625.

Full text
Abstract:
Advantages of the double coset enumeration technique include its use to represent group elements in a convenient shorter form than their usual permutation representations and to find nice permutation representations for groups. In this thesis we construct, by hand, several groups, including U₃(3) : 2, L₂(13), PGL₂(11), and PGL₂(7), represent their elements in the short form (symmetric representation) and produce their permutation representations.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Finite groups"

1

Hartley, B., G. M. Seitz, A. V. Borovik, and R. M. Bryant, eds. Finite and Locally Finite Groups. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0329-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

C, Grove Larry, ed. Finite reflection groups. 2nd ed. New York: Springer-Verlag, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Oliver, Robert. Whitehead groups of finite groups. Cambridge: Cambridge University Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grove, L. C., and C. T. Benson. Finite Reflection Groups. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4757-1869-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sengupta, Ambar N. Representing Finite Groups. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1231-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Grove, Larry C. Finite reflection groups. 2nd ed. New York: Springer-Verlag, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Grove, Larry C. Finite reflection groups. 2nd ed. New York: Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1936-, Hawkes Trevor O., ed. Finite soluble groups. Berlin: W. de Gruyter, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Blichfeldt, Hans Frederick. Finite collineation groups: With an introduction to the theory of operators and substitution groups. [sl]: [Lindemann Press], 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Griess, Robert L. Twelve sporadic groups. Berlin: Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Finite groups"

1

Saxl, J. "Finite Simple Groups and Permutation Groups." In Finite and Locally Finite Groups, 97–110. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0329-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Seitz, G. M. "Algebraic Groups." In Finite and Locally Finite Groups, 45–70. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0329-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zalesskiĭ, A. E. "Group Rings of Simple Locally Finite Groups." In Finite and Locally Finite Groups, 219–46. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0329-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brešar, Matej. "Finite Groups." In Springer Undergraduate Mathematics Series, 223–50. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14053-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Georgi, Howard. "Finite Groups." In Lie Algebras in Particle Physics, 2–42. Boca Raton: CRC Press, 2018. http://dx.doi.org/10.1201/9780429499210-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rosebrock, Stephan. "Finite Groups." In Springer Undergraduate Mathematics Series, 127–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2024. http://dx.doi.org/10.1007/978-3-662-69365-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shalev, A. "Finite p-Groups." In Finite and Locally Finite Groups, 401–50. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0329-9_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Grove, L. C., and C. T. Benson. "Coxeter Groups." In Finite Reflection Groups, 34–52. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4757-1869-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hartley, B. "Simple Locally Finite Groups." In Finite and Locally Finite Groups, 1–44. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0329-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kurzweil, Hans, and Bernd Stellmacher. "Groups Acting on Groups." In The Theory of Finite Groups, 175–223. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/0-387-21768-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Finite groups"

1

Kakarala, Ramakrishna. "Bispectrum on finite groups." In ICASSP 2009 - 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2009. http://dx.doi.org/10.1109/icassp.2009.4960328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Qin, Yongbin, Haiyue Zhang, and Daoyun Xu. "Constructions of Finite Groups." In 2015 International Conference on Computer Science and Intelligent Communication. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/csic-15.2015.85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

PASSMAN, D. S. "SEMIPRIMITIVITY OF GROUP ALGEBRAS OF LOCALLY FINITE GROUPS." In Proceedings of the AMS Special Session. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814503723_0008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

GREUEL, GERT-MARTIN, and GERHARD PFISTER. "COMPUTER ALGEBRA AND FINITE GROUPS." In Proceedings of the First International Congress of Mathematical Software. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777171_0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Swathi, V. V., and M. S. Sunitha. "Square graphs of finite groups." In INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCES-MODELLING, COMPUTING AND SOFT COMPUTING (CSMCS 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0045744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Casazza, Peter G., and Matthew Fickus. "Chirps on finite cyclic groups." In Optics & Photonics 2005, edited by Manos Papadakis, Andrew F. Laine, and Michael A. Unser. SPIE, 2005. http://dx.doi.org/10.1117/12.618272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Castellani, L. "Differential calculi on finite groups." In Corfu Summer Institute on Elementary Particle Physics. Trieste, Italy: Sissa Medialab, 1999. http://dx.doi.org/10.22323/1.001.0069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sims, Charles C. "Computing with subgroups of automorphism groups of finite groups." In the 1997 international symposium. New York, New York, USA: ACM Press, 1997. http://dx.doi.org/10.1145/258726.258857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Babai, L., and L. Ronyai. "Computing irreducible representations of finite groups." In 30th Annual Symposium on Foundations of Computer Science. IEEE, 1989. http://dx.doi.org/10.1109/sfcs.1989.63461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

MALININ, D. "ON INTEGRAL REPRESENTATIONS OF FINITE GROUPS." In Proceedings of the Conference. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814350051_0018.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Finite groups"

1

Holmes, Richard B. Signal Processing on Finite Groups. Fort Belvoir, VA: Defense Technical Information Center, February 1990. http://dx.doi.org/10.21236/ada221129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Elkholy, Abd-Elmoneim Mohamed, Mohamed Hussein Hafez Abd-ellatif, and Sarah Hassan El-sherif. Influence of S-permutable GS-subgroups on Finite Groups. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, July 2019. http://dx.doi.org/10.7546/crabs.2019.07.01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhai, Liangliang, and Xuanlong Ma. Perfect Codes in Proper Order Divisor Graphs of Finite Groups. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, December 2020. http://dx.doi.org/10.7546/crabs.2020.12.04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Moradipour, Kayvan. Conjugacy Class Sizes and n-th Commutativity Degrees of Some Finite Groups. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, May 2018. http://dx.doi.org/10.7546/crabs.2018.04.02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Yao, Jeehee Lim, Rodrigo Salgado, Monica Prezzi, and Jeremy Hunter. Pile Stability Analysis in Soft or Loose Soils: Guidance on Foundation Design Assumptions with Respect to Loose or Soft Soil Effects on Pile Lateral Capacity and Stability. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317387.

Full text
Abstract:
The design of laterally loaded piles is often done in practice using the p-y method with API p-y curves representing the behavior of soil at discretized points along the pile length. To account for pile-soil-pile interaction in pile groups, AASHTO (2020) proposes the use of p-multipliers to modify the p-y curves. In this research, we explored, in depth, the design of lateral loaded piles and pile groups using both the Finite Element (FE) method and the p-y method to determine under what conditions pile stability problems were likely to occur. The analyses considered a wide range of design scen
APA, Harvard, Vancouver, ISO, and other styles
6

Cho, Yong Seung. Finite Group Actions in Seiberg–Witten Theory. GIQ, 2012. http://dx.doi.org/10.7546/giq-8-2007-135-143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Xiu, and Xuanlong Ma. The Order Divisor Graph of a Finite Group. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, March 2020. http://dx.doi.org/10.7546/crabs.2020.03.06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sitek, M., C. Bojanowski, A. Bergeron, and J. Licht. Involute Working Group – FSI Analysis of Fuel Plates Using Finite Volume and Finite Element Methods. Office of Scientific and Technical Information (OSTI), November 2021. http://dx.doi.org/10.2172/1845461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jaegers, Peter James. Lie group invariant finite difference schemes for the neutron diffusion equation. Office of Scientific and Technical Information (OSTI), June 1994. http://dx.doi.org/10.2172/10165908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Huani, Xuanlong Ma, and Ruiqin Fu. The Probability that a Subgroup of a Finite Group Is Characteristic. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, September 2021. http://dx.doi.org/10.7546/crabs.2021.09.01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!