Academic literature on the topic 'Fire load'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fire load.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fire load"
Lydersen, Jamie M., Brandon M. Collins, Eric E. Knapp, Gary B. Roller, and Scott Stephens. "Relating fuel loads to overstorey structure and composition in a fire-excluded Sierra Nevada mixed conifer forest." International Journal of Wildland Fire 24, no. 4 (2015): 484. http://dx.doi.org/10.1071/wf13066.
Full textVermeire, Lance T., and Matthew J. Rinella. "Fire Alters Emergence of Invasive Plant Species from Soil Surface-Deposited Seeds." Weed Science 57, no. 3 (June 2009): 304–10. http://dx.doi.org/10.1614/ws-08-170.1.
Full textZhang, Qian, Wen-yu Wang, Song-song Bai, and Ying-hua Tan. "Response analysis of tunnel lining structure under impact and fire loading." Advances in Mechanical Engineering 11, no. 3 (March 2019): 168781401983447. http://dx.doi.org/10.1177/1687814019834473.
Full textMelinek, S. J. "The distribution of fire load." Fire Safety Journal 20, no. 1 (January 1993): 83–88. http://dx.doi.org/10.1016/0379-7112(93)90013-g.
Full textHardin, Richard. "Fire Hydrant Lift Eases Load." Opflow 35, no. 9 (September 2009): 10. http://dx.doi.org/10.1002/j.1551-8701.2009.tb02325.x.
Full textKumar, Sunil, and C. V. S. Kameswara Rao. "Fire load in residential buildings." Building and Environment 30, no. 2 (April 1995): 299–305. http://dx.doi.org/10.1016/0360-1323(94)00043-r.
Full textDžolev, Igor, Mirjana Laban, and Suzana Draganić. "Survey based fire load assessment and impact analysis of fire load increment on fire development in contemporary dwellings." Safety Science 135 (March 2021): 105094. http://dx.doi.org/10.1016/j.ssci.2020.105094.
Full textLiu, Yong Jun, Chao Li, and When Jun Zhou. "Numerical Analysis on Tensile Properties of Grout-filled Splice Sleeve Rebars under ISO 834 Standard Fire." E3S Web of Conferences 38 (2018): 03036. http://dx.doi.org/10.1051/e3sconf/20183803036.
Full textCruz, Miguel G., Andrew L. Sullivan, James S. Gould, Richard J. Hurley, and Matt P. Plucinski. "Got to burn to learn: the effect of fuel load on grassland fire behaviour and its management implications." International Journal of Wildland Fire 27, no. 11 (2018): 727. http://dx.doi.org/10.1071/wf18082.
Full textKawohl, Anne Katherine, and Jörg Lange. "TESTS ON 10.9 BOLTS UNDER COMBINED TENSION AND SHEAR." Acta Polytechnica 56, no. 2 (April 30, 2016): 112. http://dx.doi.org/10.14311/ap.2016.56.0112.
Full textDissertations / Theses on the topic "Fire load"
SOLTANI, GHULAM H. "BUCKLING AND POST-BUCKLING RESPOSNE OF SINGLE CURVATUE BEAM-COLUMNS UNDER THERMAL (FIRE) LOADS." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/theses/2147.
Full textFerreira, Michael J. "Barrier Performance Utilizing Normalized Heat Load as Part of an Engineering Based Building Fire Protection Analysis Method." Digital WPI, 2004. https://digitalcommons.wpi.edu/etd-theses/1074.
Full textLilja, Andreas. "Temperature analysis of fire exposed load-bearing structures of mono glazed balconies." Thesis, Luleå tekniska universitet, Byggkonstruktion och brand, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-81730.
Full textUnder det tidigare gällande regelverket boverkets konstruktionsregler, BKR, dimensionerades brandmotståndet för den bärande konstruktionen av enkelinglasade balkonger med testmetoden SP fire 105. När BKR ersattes av boverkets föreskrifter och allmänna råd om tillämpning av europeiska konstruktionsstandarder, EKS, tillsammans med Eurokoderna, slutade man att använda SP fire 105 och började istället använda nominella temperatur-/tidförlopp. I tidigare versioner av EKS föreskrevs det att dimensionering enligt klassificering ska utföras med en brandexponering enligt standardtemperatur/-tidkurvan (ISO 834). Men i och med upphörandet av BKR år 2011, genomfördes en överenskommelse mellan Balkongförening och Boverket där man bestämde att den bärande konstruktionen för enkelinglasade balkonger och öppna balkonger skulle få dimensioneras med exponeringskurvan för utvändig brand istället för standardtemperatur-/tidkurvan. Dimensionering enligt exponeringskurvan för utvändig brand resulterar i en dimensionerande temperatur på 680 °C för brandteknisk klass R30, istället för en temperatur på 842 °C vid dimensionering med standardtemperatur-/tidkurvan. Vid införandet av EKS 11 år 2019 skedde en förändring i föreskrifterna gällande branddimensionering av bärande konstruktioner. I EKS 11 framgår det explicit att byggnadsdelar vilka är placerade inom inglasade balkonger inte bör betraktas som utvändiga byggnadsdelar. Detta medför att den bärande konstruktionen för enkelinglasade balkonger inte längre kan dimensioneras enligt exponeringskurvan för utvändig brand, utan måste dimensioneras enligt standardtemperatur-/tidkurvan. Denna studie syftar till att klargöra vilken temperatur som är rimlig att använda vid dimensionering av den bärande konstruktionen för enkelinglasade balkonger. Är den tidigare exponeringskurvan för utvändig brand mer rimlig, eller är föreskriften om att använda standardtemperatur-/tidkurvan motiverad? I studien har 16 scenarion analyserats med hjälp av CFD beräkningar i simuleringsprogrammet FDS, och med hjälp av FEM beräkningar i simuleringsprogrammet TASEF. Med FDS beräknades den adiabatiska yttemperaturen för den bärande konstruktionen, vilken sedan användes som indata i TASEF för att beräkna temperaturen i den bärande konstruktionen. Maxtemperaturen på konstruktionselementen som utgörs av stål uppnår generellt temperaturer som understiger temperaturen för exponeringskurvan vid utvändig brand. I ett ”worst-case” scenario där brandkällan står i direkt anslutning till en stålkonstruktion, kan temperaturer uppnås vilka överstiger temperaturen i standardtemperatur-/tidkurvan. Maxtemperaturen på balkongplattan är högre än temperaturen i exponeringskurvan vid utvändig brand, men lägre än temperaturen i standardtemperatur-/tidkurvan. 15 mm in i balkongplattan understiger temperaturen på betongen 500 °C. Enligt 500 °C isotermmetoden som är publicerad i SS-EN 1992-1-2 innebär detta förenklat att all betong på ett djup överstigande 15 mm har kvar sin fulla bärförmåga. En slutsats är att det krävs vidare studier för att kunna fastställa vilket nominellt temperatur-/tidförlopp som borde användas vid dimensionering av den bärande konstruktionen för enkelinglasade balkonger. Ett förslag på vidare studier är att utföra brandtester på en enkelinglasad balkong, varav resultaten sedan kan jämföras med resultaten i denna studie. Sådana resultat skulle förhoppningsvis möjliggöra ett fastställande av vilket nominellt temperatur-/tidförlopp som bör användas vid dimensionering av den bärande konstruktionen för enkelinglasade balkonger.
Bregulla, Julie. "Investigation into the fire and racking behaviour of structural sandwich panel walls : a methodology to assess load bearing sandwich panels in fire." Thesis, University of Surrey, 2003. http://epubs.surrey.ac.uk/807/.
Full textStanton, Rebekah L. "Fire and Rodent Consumer Effects on Plant Community Assembly and Invasion in North American Deserts." BYU ScholarsArchive, 2021. https://scholarsarchive.byu.edu/etd/9172.
Full textAndersson, Anna, and Eva-Sara Carlson. "Structures in underground facilities : Analysis of a Concrete Column’s Capacity to Withstand Extraordinary Fire Loads." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-18114.
Full textMETRO project 2009-2012
Graham, Earl Vincent. "Developing a remotely-sensed framework for fire monitoring in the Western Cape, South Africa." University of Western Cape, 2021. http://hdl.handle.net/11394/8334.
Full textFor a long time, fire dynamics has been misunderstood and viewed as either a destructive force or an ecological necessity. The Western Cape Province in South Africa experiences the frequent occurrence of fires, due to the prevailing Mediterranean climatic conditions. This climate is known for its hot and dry summers and its cold and wet winters, which, along with the highly flammable indigenous flora of the Western Cape, provide suitable conditions for the occurrence of fires. However, the local environmental and ecological variables that influence the occurrence of fires and that could assist with fire management practices remain poorly understood. The development of an integrated operational monitoring framework is therefore imperative for detecting and mapping the occurrence of fires in the Western Cape, South Africa.
Kayili, Serkan. "Effect Of Vehicles'." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12611290/index.pdf.
Full textblockage effect on heat release rate and temperature distribution inside tunnel with different ventilation velocities. As a result, in order to research this subject, the scaled model tunnel is constructed in Fluid Mechanics Laboratory. Based on the Froude number scaling, wood sticks with different configuration inside the model tunnel are burned in a controlled environment. The heat release rate measurement, sampling of gases after combustion, mass loss rate of burning models and temperature distribution along the tunnels with different longitudinal ventilation velocities are measured to investigate the effect of different cross-sectional areas of the burning substances. Furthermore, the model vehicles having a square base area are built according to wood crib theory. The results are investigated with statistical techniques called "
Analysis of Variance"
and general results have been tried to be reached. It is determined that the variation of air velocity inside tunnel is not so effective, but model vehicle'
s cross sectional area is directly proportional to heat release rate.
Le, Phung Van. "Assessment of Fire Safety for Intermediate Floors in the New Zealand Acceptable Solution C/AS1." Thesis, University of Canterbury. Civil and Natural Resources Engineering, 2010. http://hdl.handle.net/10092/3942.
Full textÖhrling, Emil. "Brandrisker i däckhotell : Är samhällets krav på byggnadstekniskt brandskydd tillräckligt?" Thesis, Luleå tekniska universitet, Byggkonstruktion och brand, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-83256.
Full textThe aim of the thesis is mainly to investigate the risks that exist in case of fire in tire hotels and to evaluate whether society's requirements for fire protection in buildings are enough to manage this level of risk. Society's requirements in the study are Boverket's building regulations, BFS 2011:6 with amendments up to BFS 2020:4, (BBR) and the requirements that takes place in accordance with simplified design. The requirements in BBR have been quantified to enable a comparison between BBR and the actual conditions found in tire hotels. The study only treats three of the five items which BBR is based on. Development and spread of fire and smoke within the construction works is limited, spread of fire to adjacent construction works is limited and consideration has been taken to the rescue team's safety in case of fire. It exists some experience of fires in tire storage, but not a general picture of how a tire hotel should be design according to the building regulations, nor if it´s compatible with the building regulations' intention or the rescue team's practical experience of carrying out a rescue operation. The question is how the fire protection should be designed in tire hotels so that society's requirements can be fulfilled? When it can be thousands of tires which are stored at the same time in a tire hotel. The method to answer the questions was to carry out a few different analyses based on real tire hotels, together with research and studies in this area, so the questions could be answered quantitatively and/or qualitatively. However, all questions required some assumptions to be answered. To obtain something to base the assumptions against, a case study on real tire hotels was conducted. Five different geometric models were therefore created based on the buildings in terms of volume, construction materials and ventilation openings. The case study also showed a great variation in the number of tires that were stored in the hotels. Even with the variation, it can be stated that the fire load in a tire hotel exceeds 1600 MJ/m2 per floor area. The buildings construction material has a big impact on the fire temperature in the room. Tire hotels with a concrete construction provide better conditions for the fire-separation components to maintain the limiting function, in comparison with a construction of metal sheets with a core of insulation. A fire compartment boundary that is exposed to a temperature rise that occur in a metal structure, may not have the function over time it supposed to limit the spread of fire to other rooms during the intended time. BBR specifies two protective barriers to limit the spread of fire to adjacent construction, which are safety distances or that an exterior wall is designed as a fire compartment boundary. The function to limited fire spread by a fire compartment boundary is dependent on the building's construction material to fulfill its purpose. For a safety distance to work, the openings in the facade must be limited and not larger than a normal garage door. The purpose of protecting adjacent construction is therefore not fulfilled. The safety distance should be in relation to the area of openings instead of a fixed value. If the safety distance is a fixed value, the areas of openings should be regulated, if not, the size of the critical radiation that occur on an adjacent construction should be limited. Examination of the rescue team's safety was a comparison between BBR and interviews on how a rescue operation could be carried out. Under the interviews it was discussed what type of risks that are caused by the fire and the building, and how these risks can affect the implementation of the operation. The fire technical arrangements do not fulfill its purpose, to create the level of safety that are required for the rescue team when the fire technical design is according to a simplified design. Without early detection, the risk is imminent that the fire is too large for a person to use an indoor fire hydrant. The most important arrangements for the safety of the rescue team are however to ensure access to the right volume of water near the building. Tire hotels placed in containers are the only type of building which can be projected according to simplified design. This storage method provides the best opportunity for a successful rescue operation with a low risk. Containers are also the only geometric model where fire compartment boundary would clearly fulfill its purpose, in both class EI 30 and EI 60. Containers have normally no windows or other equivalent openings.
Books on the topic "Fire load"
Copyright Paperback Collection (Library of Congress), ed. Fire lord. New York, NY: DAW Books, 1989.
Find full textPiggott, Michael R. Load bearing fibre composites. 2nd ed. Boston: Kluwer Academic, 2002.
Find full textPiggott, Michael R. Load bearing fibre composites. 2nd ed. Willowdale, Ont: MERP Enhanced Composites, 2001.
Find full textBook chapters on the topic "Fire load"
Fontana, Mario, Jochen Kohler, Katharina Fischer, and Gianluca De Sanctis. "Fire Load Density." In SFPE Handbook of Fire Protection Engineering, 1131–42. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2565-0_35.
Full textBrunkhorst, Sven, and Jochen Zehfuß. "Experimental and Numerical Analysis of Fire Development in Compartment Fires with Immobile Fire Load." In Wood & Fire Safety, 185–90. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41235-7_28.
Full textZhao, Han, Qingsong Wang, Yanfei Su, Yu Wang, Guangzheng Shao, Haodong Chen, and Jinhua Sun. "Experimental Investigation on Glass Cracking for Wind Load Combined with Radiant Heating." In Fire Science and Technology 2015, 255–60. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0376-9_25.
Full textXie, Philip, Anthony Abu, and Michael Spearpoint. "Comparison of Existing Time-Equivalence Methods and the Minimum Load Capacity Method." In Fire Science and Technology 2015, 263–71. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0376-9_26.
Full textMakovicka Osvaldova, Linda, and Michaela Horvathova. "Effect of Thermal Load on the Heat Release Rate of the Selected Types of Wooden Floorings." In Wood & Fire Safety, 41–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41235-7_7.
Full textMizukami, Tensei, and Takeyoshi Tanaka. "Determination of Design Fire Load for Structural Fire Safety in the Compartment Subdivided by Non-Fire-Rated Partitions." In Fire Science and Technology 2015, 341–50. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0376-9_34.
Full textMorita, Takeshi, Heisuke Yamashita, Masuhiro Beppu, and Makoto Suzuki. "A Study on Structural Behavior of Reinforced Concrete Walls Exposed to Hydrocarbon Fire Under Vertical Load." In Fire Science and Technology 2015, 299–308. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0376-9_30.
Full textMcNulty, Steven G., Sara E. Strickland, Erika Cohen, and Jennifer A. Moore Myers. "Climate Change and Fire impacts on Ecosystem Critical Nitrogen Load." In Remote Sensing and Modeling Applications to Wildland Fires, 237–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32530-4_17.
Full textLi, Chenfeng, Kun Zhang, Ziyang Wei, Xueqian Zhou, Huilong Ren, and Weijun Xu. "Thermal load and residual strength of vessels under cabin fire." In Developments in Maritime Technology and Engineering, 469–76. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003216582-53.
Full textHo, San-Ping, Hue-Pei Chang, Chin-Feng Chen, Steven Chiang, Wei-Chih Fang, and W. K. Chow. "Safety Study on Load-Limiting Device for Rope Rescue." In The Proceedings of 11th Asia-Oceania Symposium on Fire Science and Technology, 309–20. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9139-3_24.
Full textConference papers on the topic "Fire load"
Razdolsky, Leo. "Probability Based Structural Fire Load." In Structures Congress 2013. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784412848.224.
Full textXiong, Yifang, Michail Diakostefanis, and Suresh Sampath. "Numerical simulations of containerized-load fire scenario for aircraft cargo fire safety." In AIAA AVIATION 2021 FORUM. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2021. http://dx.doi.org/10.2514/6.2021-2759.
Full textXiong, Yifang, Michail Diakostefanis, and Suresh Sampath. "Withdrawal: Numerical simulations of containerized-load fire scenario for aircraft cargo fire safety." In AIAA AVIATION 2021 FORUM. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2021. http://dx.doi.org/10.2514/6.2021-2759.c1.
Full textBurns, Lauren. "Fire-Under-Load Testing of Carbon Epoxy Composites." In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-222.
Full textViegas, D. X., D. Stipanicev, L. Ribeiro, L. P. Pita, and C. Rossa. "The Kornati fire accident – eruptive fire in relatively low fuel load herbaceous fuel conditions." In FOREST FIRES 2008. Southampton, UK: WIT Press, 2008. http://dx.doi.org/10.2495/fiva080361.
Full textHe, Xuechao, Yuanyi Xie, Keheng Chen, Yanqiu Chen, Jing Liu, and Peng Wang. "The Influence of Fire Load Density and Smoke Curtain on Smoke Exhaust Efficiency of Commercial Complex." In 2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE). IEEE, 2019. http://dx.doi.org/10.1109/icfsfpe48751.2019.9055828.
Full textYang, Kuo-Chen, Hung-Hsin Lee, and Olen Chan. "Experimental Study on Ultimate Strength of H-Shaped Fire-Resistant Steel Columns under Fire Load." In Structures Congress 2005. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40753(171)56.
Full textFranssen, Jean-Marc, and Venkatesh Kodur. "Residual Load Bearing Capacity of Structures Exposed to Fire." In Structures Congress 2001. Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40558(2001)89.
Full textLiu, Faqi, Hua Yang, and Sumei Zhang. "Fire and post-fire performance of circular steel tube confined reinforced concrete columns." In 12th international conference on ‘Advances in Steel-Concrete Composite Structures’ - ASCCS 2018. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/asccs2018.2018.7002.
Full textSiebert, Geralt. "Fire safe glazing with additional requirements." In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.1183.
Full textReports on the topic "Fire load"
Hoehler, Matthew S., and Christopher M. Smith. Influence of fire on the lateral load capacity of steel-sheathed cold-formed steel shear walls - report of test. Gaithersburg, MD: National Institute of Standards and Technology, December 2016. http://dx.doi.org/10.6028/nist.ir.8160.
Full textHeymsfield, Ernie, and Jeb Tingle. State of the practice in pavement structural design/analysis codes relevant to airfield pavement design. Engineer Research and Development Center (U.S.), May 2021. http://dx.doi.org/10.21079/11681/40542.
Full textBrown, Alexander, Dann A. Jernigan, and Amanda B. Dodd. Intermediate-scale Fire Performance of Composite Panels under Varying Loads. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1177721.
Full textMitchell, Richard A., Simone L. Yaniv, Kenneth Yee, and Otto K. Warnlof. Intercomparison of load cell verification tests performed by national laboratories of five countries. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.ir.89-4101.
Full textGrol, Eric, Thomas J. Tarka, Paul Myles, Leonard M. Bartone, Jr, James Simpson, and Gianalfredo Rossi. Impact of Load Following on the Economics of Existing Coal-Fired Power Plant Operations. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1513827.
Full textKirby, B. J. Using Five-Minute Data to Allocate Load-Following and Regulation Requirements among Individual Customers. Office of Scientific and Technical Information (OSTI), March 2001. http://dx.doi.org/10.2172/814471.
Full textGerdes, John. Design of a Five-Axis Load Cell for Submerged Wing Testing in an Oil Tank. Fort Belvoir, VA: Defense Technical Information Center, December 2011. http://dx.doi.org/10.21236/ada562393.
Full textAmiti, Mary, and David Weinstein. How Much do Idiosyncratic Bank Shocks Affect Investment? Evidence from Matched Bank-Firm Loan Data. Cambridge, MA: National Bureau of Economic Research, March 2013. http://dx.doi.org/10.3386/w18890.
Full textThomas, R. L. A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service. Office of Scientific and Technical Information (OSTI), March 1988. http://dx.doi.org/10.2172/5086915.
Full textThomas, R. L. A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service. Second topical report. Office of Scientific and Technical Information (OSTI), March 1988. http://dx.doi.org/10.2172/10161825.
Full text