To see the other types of publications on this topic, follow the link: First Row Transition Metals.

Journal articles on the topic 'First Row Transition Metals'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'First Row Transition Metals.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Eisenhart, Reed J., Laura J. Clouston, and Connie C. Lu. "Configuring Bonds between First-Row Transition Metals." Accounts of Chemical Research 48, no. 11 (October 22, 2015): 2885–94. http://dx.doi.org/10.1021/acs.accounts.5b00336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Belov, Dmitry S., Gabriela Tejeda, and Konstantin V. Bukhryakov. "Olefin Metathesis by First‐Row Transition Metals." ChemPlusChem 86, no. 6 (June 2021): 924–37. http://dx.doi.org/10.1002/cplu.202100192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Golen, James A., Duyen N. K. Pham, Mrittika Roy, Ava Kreider-Mueller, and David R. Manke. "Pyridine complexes of some first-row transition metals." Acta Crystallographica Section A Foundations and Advances 74, a1 (July 20, 2018): a205. http://dx.doi.org/10.1107/s0108767318097945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

van der Vlugt, Jarl Ivar. "Cooperative Catalysis with First-Row Late Transition Metals." European Journal of Inorganic Chemistry 2012, no. 3 (September 29, 2011): 363–75. http://dx.doi.org/10.1002/ejic.201100752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Russo, Thomas V., Richard L. Martin, and P. Jeffrey Hay. "Density functional calculations on first‐row transition metals." Journal of Chemical Physics 101, no. 9 (November 1994): 7729–37. http://dx.doi.org/10.1063/1.468265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sleven, Jurgen, Thomas Cardinaels, Christiane Görller-Walrand, and Koen Binnemans. "Liquid-crystalline metallophthalocyanines containing late first-row transition metals." Arkivoc 2003, no. 4 (March 14, 2003): 68–82. http://dx.doi.org/10.3998/ark.5550190.0004.406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shetti, Shreedhar N., A. Sitaramachandra Murty, and Gopal L. Tembe. "Isonitrosoacetylacetone dithiosemicarbazone complexes of some first row transition metals." Transition Metal Chemistry 18, no. 5 (October 1993): 467–72. http://dx.doi.org/10.1007/bf00136605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lambers, Eric S. "Study of the First Row Transition Metals by AES." Surface Science Spectra 2, no. 4 (October 1993): 271–304. http://dx.doi.org/10.1116/1.1247709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Duarte, Jorge, and M. A. Ray. "AES Study of the First Row of Transition Metals." Surface Science Spectra 2, no. 4 (October 1993): 305–42. http://dx.doi.org/10.1116/1.1247710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Madhu,, N. T., P. k. Radhakrishnan,, Matthias Grunert,, Peter Weinberger,, and Wolfgang Linert,. "Antipyrine and its Derivatives with First Row Transition Metals." Reviews in Inorganic Chemistry 23, no. 1 (January 2003): 1–24. http://dx.doi.org/10.1515/revic.2003.23.1.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Paxton, A. T., M. Methfessel, and H. M. Polatoglou. "Structural energy-volume relations in first-row transition metals." Physical Review B 41, no. 12 (April 15, 1990): 8127–38. http://dx.doi.org/10.1103/physrevb.41.8127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Mustieles Marin, Irene, Juan M. Asensio, and Bruno Chaudret. "Bimetallic Nanoparticles Associating Noble Metals and First-Row Transition Metals in Catalysis." ACS Nano 15, no. 3 (March 4, 2021): 3550–56. http://dx.doi.org/10.1021/acsnano.0c09744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Chen, Jianlin, Hao Feng, Yaoming Xie, and R. Bruce King. "Bis(methylborole) sandwich compounds of the first row transition metals." Polyhedron 101 (November 2015): 126–32. http://dx.doi.org/10.1016/j.poly.2015.07.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Chen, Jianlin, Shaoling Chen, Zhiguo Liu, Hao Feng, Yaoming Xie, and R. Bruce King. "Bis(methylborabenzene) sandwich compounds of the first row transition metals." Journal of Organometallic Chemistry 763-764 (August 2014): 69–73. http://dx.doi.org/10.1016/j.jorganchem.2014.04.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Cheaib, Khaled, Christian Herrero, Régis Guillot, Frédéric Banse, Jean-Pierre Mahy, and Frédéric Avenier. "Imidazolidine Ring Cleavage upon Complexation with First-Row Transition Metals." European Journal of Inorganic Chemistry 2017, no. 33 (September 7, 2017): 3884–91. http://dx.doi.org/10.1002/ejic.201700605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Sarode, P. R. "EXAFS in Niobium Dichalcogenides Intercalated with First-Row Transition Metals." physica status solidi (a) 98, no. 2 (December 16, 1986): 391–97. http://dx.doi.org/10.1002/pssa.2210980209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

van der Vlugt, Jarl Ivar. "ChemInform Abstract: Cooperative Catalysis with First-Row Late Transition Metals." ChemInform 43, no. 16 (March 22, 2012): no. http://dx.doi.org/10.1002/chin.201216249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Sizova, O. V., and V. I. Baranovskii. "Indo parameters for the first-and second-row transition metals." Journal of Structural Chemistry 35, no. 4 (July 1994): 425–32. http://dx.doi.org/10.1007/bf02578351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Nachtigall, Olaf, Andrew I. VanderWeide, William W. Brennessel, and William D. Jones. "First‐Row Transition Metals Complexes with Fused Oxazolidine (FOX) Ligands." Zeitschrift für anorganische und allgemeine Chemie 647, no. 14 (April 22, 2021): 1442–48. http://dx.doi.org/10.1002/zaac.202100056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Li, Zhi, Zhen Zhao, and Tao-tao Shao. "First-principles calculations on the first row transition metals-substituted TMC6N7 clusters." Research on Chemical Intermediates 46, no. 6 (April 2, 2020): 3097–107. http://dx.doi.org/10.1007/s11164-020-04137-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Cleave and Crans. "The First-Row Transition Metals in the Periodic Table of Medicine." Inorganics 7, no. 9 (September 6, 2019): 111. http://dx.doi.org/10.3390/inorganics7090111.

Full text
Abstract:
In this manuscript, we describe medical applications of each first-row transition metal including nutritional, pharmaceutical, and diagnostic applications. The 10 first-row transition metals in particular are found to have many applications since there five essential elements among them. We summarize the aqueous chemistry of each element to illustrate that these fundamental properties are linked to medical applications and will dictate some of nature’s solutions to the needs of cells. The five essential trace elements—iron, copper, zinc, manganese, and cobalt—represent four redox active elements and one redox inactive element. Since electron transfer is a critical process that must happen for life, it is therefore not surprising that four of the essential trace elements are involved in such processes, whereas the one non-redox active element is found to have important roles as a secondary messenger.. Perhaps surprising is the fact that scandium, titanium, vanadium, chromium, and nickel have many applications, covering the entire range of benefits including controlling pathogen growth, pharmaceutical and diagnostic applications, including benefits such as nutritional additives and hardware production of key medical devices. Some patterns emerge in the summary of biological function andmedical roles that can be attributed to small differences in the first-row transition metals.
APA, Harvard, Vancouver, ISO, and other styles
22

EJEROMEDOGHENE, O., M. D. ADEOYE, S. ADEWUYI, and S. ADEWUYI. "COORDINATIVE INTERACTION OF CHITOSAN-AZO DYES TOWARDS SELECTED FIRST ROW TRANSITION METALS." Journal of Natural Sciences Engineering and Technology 17, no. 1 (November 6, 2019): 1–8. http://dx.doi.org/10.51406/jnset.v17i1.1892.

Full text
Abstract:
Chitosan is an abundant bio-polymer obtained by alkaline deacetylation of chitin in the exoskeleton of crustaceans. Chitosan was found to be an attractive alternative to other bio materials due to its significant physicochemical behavior and ability to selectively bind to transition and post transition metals. In order to improve the performance of this bio-polymer, chemical modification of chitosan composite and its derivatives have gained much attention. In this study, a new biopolymeric ligand was synthesized by functionalizing chitosan with eriochrome black T (EBT) and sudan III (S3) dyes. The functionalized compounds were interacted with Co(II), Ni(II), Cu(II) and Zn(II) metal ions at varied concentrations leading to complex formation. Both the new ligand and the complexes obtained at high yields were characterized using Fourier Transform Infrared (FT-IR) and Uv-Vis Spectroscopy. The FT-IR spectra revealed a possible hydrogen bonding between chitosan and the azo dye. It also suggests an interaction between the N=N of the ligand with the metal ions. In addition, the Uv-Visible spectra studies showed that on reacting various concentrations of metal ions with ligand the absorbance increases with decreasing concentration of the metal ions and was able to interact with as low as 0.001 M of the studied metal salts.
APA, Harvard, Vancouver, ISO, and other styles
23

Nathan, Lawrence C., Donald C. Zapien, Anne M. Mooring, Christine A. Doyle, and Julie A. Brown. "Anionic 2,6-pyridinedicarboxylate complexes with some divalent first-row transition metals." Polyhedron 8, no. 6 (January 1989): 745–48. http://dx.doi.org/10.1016/s0277-5387(00)83842-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Zweig, Joshua E., Daria E. Kim, and Timothy R. Newhouse. "Methods Utilizing First-Row Transition Metals in Natural Product Total Synthesis." Chemical Reviews 117, no. 18 (May 19, 2017): 11680–752. http://dx.doi.org/10.1021/acs.chemrev.6b00833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lu, Shuangxing, Vladimir V. Strelets, Matthew F. Ryan, William J. Pietro, and A. B. P. Lever. "Electrochemical Parametrization in Sandwich Complexes of the First Row Transition Metals." Inorganic Chemistry 35, no. 4 (January 1996): 1013–23. http://dx.doi.org/10.1021/ic950620e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Patel, M. N., H. D. Upadhayaya, and P. P. Patel. "Stereochemical Versatility of Some New Polychelates of First Row Transition Metals." Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry 20, no. 9 (October 1990): 1153–68. http://dx.doi.org/10.1080/00945719008048625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ashley, Andrew E., Robert T. Cooper, Gregory G. Wildgoose, Jennifer C. Green, and Dermot O’Hare. "Homoleptic Permethylpentalene Complexes: “Double Metallocenes” of the First-Row Transition Metals." Journal of the American Chemical Society 130, no. 46 (November 19, 2008): 15662–77. http://dx.doi.org/10.1021/ja8057138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Mitin, Alexander V., Jon Baker, and Peter Pulay. "An improved 6-31G* basis set for first-row transition metals." Journal of Chemical Physics 118, no. 17 (May 2003): 7775–82. http://dx.doi.org/10.1063/1.1563619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Fernandez Pacios, L. "Modification of Ar-core effective potentials for first-row transition metals." Chemical Physics Letters 169, no. 4 (June 1990): 281–84. http://dx.doi.org/10.1016/0009-2614(90)85202-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Bou-Abdallah, Fadi, and Thomas R. Giffune. "The thermodynamics of protein interactions with essential first row transition metals." Biochimica et Biophysica Acta (BBA) - General Subjects 1860, no. 5 (May 2016): 879–91. http://dx.doi.org/10.1016/j.bbagen.2015.11.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Filgueiras, Carlos A. L., and Eva V. Marques. "Complexes of first row transition metals withMeso-1,2-bis(propylsulphinyl)ethane." Transition Metal Chemistry 10, no. 7 (1985): 241–43. http://dx.doi.org/10.1007/bf00621076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Wolfe, Timothy S., Renee M. Van Ginhoven, and Alejandro Strachan. "Computational study of first-row transition metals in monodoped 4H-SiC." Modelling and Simulation in Materials Science and Engineering 29, no. 5 (May 20, 2021): 055008. http://dx.doi.org/10.1088/1361-651x/abf486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Szirtes, László, László Riess, János Megyeri, and Ernõ Kuzmann. "Comparative study of layered tetravalent metal phosphates containing various first-row divalent metals. Synthesis, crystalline structure." Open Chemistry 5, no. 2 (June 1, 2007): 516–35. http://dx.doi.org/10.2478/s11532-007-0003-2.

Full text
Abstract:
AbstractThe transition metal forms of α-zirconium-. titanium-, and hafnium phosphates were prepared by ion exchange method. Their structure was investigated by X-ray powder diffraction (XRPD) method. It was found that the transition metal containing phosphates have the same layered structure as the pristine tetravalent metal phosphates, except for the increase of interlayer distance from 7.6 Å to ∼9.5 Å. As a result of the incorporation of transition metals in the layers, the c-axis is increased from ∼15 Å to ∼20 Å (in the case of titanium phosphate to ∼25 Å). All other parameters (a, b and β °) are practically unchanged.
APA, Harvard, Vancouver, ISO, and other styles
34

Blaziak, Kacper, Demeter Tzeli, Sotiris S. Xantheas, and Einar Uggerud. "The activation of carbon dioxide by first row transition metals (Sc–Zn)." Physical Chemistry Chemical Physics 20, no. 39 (2018): 25495–505. http://dx.doi.org/10.1039/c8cp04231d.

Full text
Abstract:
The activation of CO2 by chloride-tagged first-row transition metal anions [ClM] (M = Sc–Zn), was examined by mass spectrometry, quantum chemical calculations, and statistical analysis.
APA, Harvard, Vancouver, ISO, and other styles
35

Wu, Q. H., P. Zhao, Y. Su, S. J. Li, J. H. Guo, and G. Chen. "Spin transport of dibenzotetraaza[14]annulene complexes with first row transition metals." RSC Advances 5, no. 65 (2015): 52938–44. http://dx.doi.org/10.1039/c5ra07456h.

Full text
Abstract:
We investigate the spin transport properties of DBTAA complexes involving first row transition metals. The results show that Fe– and Co–DBTAA exhibit perfect spin filtering effect, which is dependent on the connected position of anchoring group.
APA, Harvard, Vancouver, ISO, and other styles
36

Hulley, Elliott B., Spencer P. Heins, Peter T. Wolczanski, Kyle M. Lancaster, and Emil B. Lobkovsky. "Azaallyl-derived ring formation via redox coupling in first row transition metals." Polyhedron 158 (January 2019): 225–33. http://dx.doi.org/10.1016/j.poly.2018.10.070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Webster, R. L. "β-Diketiminate complexes of the first row transition metals: applications in catalysis." Dalton Transactions 46, no. 14 (2017): 4483–98. http://dx.doi.org/10.1039/c7dt00319f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Raghavachari, Krishnan, and Gary W. Trucks. "Highly correlated systems. Ionization energies of first row transition metals Sc–Zn." Journal of Chemical Physics 91, no. 4 (August 15, 1989): 2457–60. http://dx.doi.org/10.1063/1.457005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Raghavachari, Krishnan, and Gary W. Trucks. "Highly correlated systems. Excitation energies of first row transition metals Sc–Cu." Journal of Chemical Physics 91, no. 2 (July 15, 1989): 1062–65. http://dx.doi.org/10.1063/1.457230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hannedouche, Jérôme, and Clément Lepori. "First-Row Late Transition Metals for Catalytic (Formal) Hydro­amination of Unactivated Alkenes." Synthesis 49, no. 06 (November 29, 2016): 1158–67. http://dx.doi.org/10.1055/s-0036-1588358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Fowler, Patrick W., and Erich Steiner. "Temperature-independent paramagnetism in closed-shell oxanions of first-row transition metals." Journal of the Chemical Society, Faraday Transactions 89, no. 12 (1993): 1915. http://dx.doi.org/10.1039/ft9938901915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Grünwald, Katrin R., Gerald Saischek, Manuel Volpe, Ferdinand Belaj, and Nadia C. Mösch-Zanetti. "Pyridazine-Based Ligands and Their Coordinating Ability towards First-Row Transition Metals." European Journal of Inorganic Chemistry 2010, no. 15 (April 16, 2010): 2297–305. http://dx.doi.org/10.1002/ejic.201000120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lawson, Catherine S., Brian J. Tielsch, and Julia E. Fulghum. "Study of the First Row Transition Metals by X-ray Photoelectron Spectroscopy." Surface Science Spectra 4, no. 4 (October 1996): 316–44. http://dx.doi.org/10.1116/1.1247829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Sparta, Manuel, Vidar R. Jensen, and Knut J. B⊘rve. "Structure and Stability of Substitutional Metallofullerenes of the First‐Row Transition Metals." Fullerenes, Nanotubes and Carbon Nanostructures 14, no. 2-3 (December 2006): 269–78. http://dx.doi.org/10.1080/15363830600663974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Agbossou-Niedercorn, Francine, and Christophe Michon. "Bifunctional homogeneous catalysts based on first row transition metals in asymmetric hydrogenation." Coordination Chemistry Reviews 425 (December 2020): 213523. http://dx.doi.org/10.1016/j.ccr.2020.213523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wang, Hongyan, Ruhu Li, and R. Bruce King. "Fluorocarbon sandwich compounds: Bis(octafluorocyclooctatetraene) derivatives of the first row transition metals." Journal of Fluorine Chemistry 153 (September 2013): 121–29. http://dx.doi.org/10.1016/j.jfluchem.2013.04.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

de Sousa Sousa, Natanael, Roberto Batista de Lima, Adilson Luís Pereira Silva, Auro Atsushi Tanaka, Albérico Borges Ferreira da Silva, and Jaldyr de Jesus Gomes Varela. "Theoretical study of dibenzotetraaza[14]annulene complexes with first row transition metals." Computational and Theoretical Chemistry 1054 (February 2015): 93–99. http://dx.doi.org/10.1016/j.comptc.2014.12.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Taghizadeh, A., Parisa Rajabali Jamaat, and Maryam Daghighi Asli. "The First Row Transition Metals on Stabilization of Biliverdin Complexes: Theoretical Study." Russian Journal of Inorganic Chemistry 66, no. 4 (April 2021): 516–24. http://dx.doi.org/10.1134/s0036023621040227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Mikulski, Chester M., Marle E. Holman, Glenn Tener, Troy Dobson, Samoth Eang, William Welsh, Yvonne Nujoma, and Nicholas M. Karayannis. "Urate complexes of dipositive first row transition metal ions." Transition Metal Chemistry 19, no. 5 (October 1994): 491–93. http://dx.doi.org/10.1007/bf00136357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Slocombe, Daniel R., Vladimir L. Kuznetsov, Wojciech Grochala, Robert J. P. Williams, and Peter P. Edwards. "Superconductivity in transition metals." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2037 (March 13, 2015): 20140476. http://dx.doi.org/10.1098/rsta.2014.0476.

Full text
Abstract:
A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen–Cooper–Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography